## AP Calc BC (Spring, 2024) Mock Exam 1 - Solution

- 1. [#17] Find the area inside the curve  $r = 2\cos(3\theta)$  on the interval [#0,  $\frac{\pi}{\epsilon}$ ].
- 5. [#31] Which of the following integrals gives the volume of the solid that results when the region between  $y = 2x^2 + 4x - 9$  and y = 3 - x is revolved around the line y = -12? (A)  $\pi \int_{-\frac{3}{2}}^{\frac{1}{2}} [(2x^2 + 4x + 3)^2 - (15 - x)^2] dx$ (B)  $\pi \int_{-\frac{3}{2}}^{\frac{3}{2}} [(2x^2 + 4x + 3)^2 - (15 - x)^2] dx$ (C)  $\pi \int_{-\frac{3}{2}}^{\frac{1}{2}} [(15 - x)^2 - (2x^2 + 4x + 3)^2] dx$

3. [#26] Find the 3<sup>rd</sup> degree Maclaurin expansion for  $f(x) = \ln (1 + 2x)$ .

2. [#21] Find  $\frac{dy}{dx}$  if  $y = \frac{\cos 2x - \sin^2 x}{2\sin^2 x}$ .

6. [#33] Find the value of *c* that is guaranteed by the Mean Value Theorem for f(x) = x<sup>3</sup> + x - 8 on the interval [#1, 2].

7. [#35] The rate of growth of fungus spores on a log can be modeled by  $\frac{dy}{dt} = 0.85y$ , where *t* is measured in days. If initially there are 515 fungus spores on the log, how many will there be after 5.8 days?

-1-Drafted by www.MathEnglish.com



4. [#30] Find  $\frac{dy}{dx}$  if  $y = \frac{\sec x}{1-x^3}$ . (A)  $-\frac{\sec x \tan x}{3x^2}$ 

(B) 
$$\frac{(1-x^{3})(\sec x \tan x) - (\sec x)(-3x^{2})}{(1-x^{3})^{2}}$$
  
(C) 
$$\frac{(1-x^{3})(\sec^{2} x) - (\sec x)(-3x^{2})}{(1-x^{3})^{2}}$$
  
(D) 
$$-\frac{\sec^{2} x}{3x^{2}}$$

## AP Calc BC (Spring, 2024) Mock Exam 1 - Solution

- 8. [#36] A rectangle is inscribed between the *x*-axis and  $y=\sqrt{20-x^2}$ . What is the maximum area of the rectangle?
- 10. [#39] A box with a no top and rectangular sheet of tin with dimensions 8×14 in<sup>2</sup> by cutting identical squares from the four corners and folding up the sides. What is the maximum volume of the box?

- 9. [#37] Two particles are located  $x_1(t)=t^2+5t$   $x_2(t)=t^3$ At what time *t* are the two velocities equal on the interval [#0, 10]?
- 11. [#40] Find the area of the region formed by the *y*-axis,  $y = \sin x^2$ , and  $y = e^{-x}$ .

## Answer Ley

1. 
$$\frac{1}{2} \int_{0}^{\frac{\pi}{6}} r^{2} d\theta$$
$$= \frac{1}{2} \int_{0}^{\frac{\pi}{6}} 4\cos^{2} 3\theta d\theta$$
$$= 2 \int_{0}^{\frac{\pi}{6}} \frac{\cos 6\theta + 1}{2} d\theta$$
$$= \int_{0}^{\frac{\pi}{6}} \cos 6\theta d\theta + \int_{0}^{\frac{\pi}{6}} d\theta$$
$$= \frac{\pi}{6}$$

2. Double angle formula:  $\cos 2x = 1 - 2 \sin^2 x = 2\cos^2 x - 1$ 

$$\frac{\frac{1-2\sin^2 x}{2\sin^2 x} - \sin^2 x}{\frac{2\sin^2 x}{2\sin^2 x}} = \frac{1-2\sin^2 x}{2\sin^2 x}$$
$$= \frac{1-3\sin^2 x}{2\sin^2 x}$$
$$= \frac{1}{2\sin^2 x} - \frac{3}{2}$$
$$\frac{dy}{dx} = -\frac{-2}{2}\frac{\cos x}{\sin^3 x} = -\frac{\cos x}{\sin x}\frac{1}{\sin^2 x}$$
$$= -\cot x \cdot \csc^2 x$$

3. 
$$\frac{1}{1-x} = 1 + x + x^{2} + x^{3} + x^{4} + x^{5} \dots$$
$$\frac{1}{1+x} = 1 - x + x^{2} - x^{3} + x^{4} - x^{5} \dots$$
$$\int \frac{1}{1+x} dx = \int 1 - x + x^{2} - x^{3} + x^{4} - x^{5} \dots dx$$
$$\ln(1 + x) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} - \dots$$
$$\ln(1 + 2x) = (2x) - \frac{1}{2}(2x)^{2} + \frac{1}{3}(2x)^{3} - \dots$$
$$= 2x - 2x^{2} + \frac{8}{3}x^{3}$$

$$x = -4 \text{ or } \frac{3}{2}$$

6. 
$$f'(x) = 3x^{2} + 1 = \frac{f(2) - f(1)}{2 - 1} = 8$$
$$3x^{2} = 7$$
$$x = \sqrt{\frac{7}{3}}$$
$$1.527525232$$

7. 
$$\frac{dy}{y} = 0.85dt$$
  
 $\ln y = 0.85t$   
 $y = ce^{0.85t}$   
 $y(0) = 515$   
 $y(t) = 515e^{0.85t}$   
 $y(5.8) =$   
515e<sup>.85 (5.8)</sup>  
71265.4488t

4. B  

$$y = \frac{1}{\cos x (1-x^{3})}$$
Apply ln to both sides:  

$$\ln y = -\ln \cos x - \ln(1-x^{3})$$

$$\frac{y'}{y} = \frac{\sin x}{\cos x} + \frac{3x^{2}}{1-x^{3}}$$

$$y' = y(\tan x + \frac{3x^{2}}{1-x^{3}})$$

$$y' = \frac{1}{\cos x (1-x^{3})} (\tan x + \frac{3x^{2}}{1-x^{3}}) = \frac{(1-x^{3}) \sec x \tan x + 3x^{2} \sec x}{(1-x^{3})^{2}}$$

5. D  $2x^2 + 4x - 9 = 3 - x$  $2x^2 + 5x - 12 = 0$ 

(2x - 3)(x + 4) = 0



## AP Calc BC (Spring, 2024) Mock Exam 1 – Solution

8.



9.  $x_1'(t) = 2t+5$   $x_2'(t) = 3t^2$   $3t^2 - 2t - 5 = 0$  (3t - 5)(t + 1) = 0 $t = \frac{5}{3}$  10. V(x) = x(8 - 2x)(14 - 2x)



11. Y1 = sin(X<sup>2</sup>) Y2 = e<sup>-X</sup> Y3 = e<sup>-X</sup> Y1=sin(X2) X=.73404255 Y=.51312222  $\int_{0}^{.734} (Y2 - Y1) dX$ . 3909069451