AP Calc BC (Sprins, 2024) Mock Exam 1 - Solution

1. [\#17] Find the area inside the curve $r=$ $2 \cos (3 \theta)$ on the interval [\#0, $\frac{\pi}{6}$].
2. [\#31] Which of the following integrals gives the volume of the solid that results when the region between
$y=2 x^{2}+4 x-9$ and
$y=3-x$ is revolved around the line $y=-12$?
(A) $\pi \int_{\frac{5}{2}}^{4}\left[\left(2 x^{2}+4 x+3\right)^{2}-(15-x)^{2}\right] d x$
(B) $\pi \int_{-1}^{3}\left[\left(2 x^{2}+4 x+3\right)^{2}-(15-x)^{2}\right] d x$
(C) $\pi \int_{\frac{5}{2}}^{n}\left[(15-x)^{2}-\left(2 x^{2}+4 x+3\right)^{4}\right] d x$
(D) $\pi \int_{-1}^{3}\left[(15-x)^{2}-\left(2 x^{2}+4 x+3\right)^{2}\right] d x$
3. [\#26] Find the $3^{\text {rd }}$ degree Maclaurin expansion for $f(x)=\ln (1+2 x)$.
4. [\#33] Find the value of c that is guaranteed by the Mean Value Theorem for
$f(x)=x^{3}+x-8$ on the interval [\#1,2].
5. [\#30] Find $\frac{d y}{d x}$ if $y=\frac{\sec x}{1-x^{3}}$.
(A) $-\frac{\sec x \tan x}{3 x^{2}}$
(B) $\frac{\left(1-x^{3}\right)(\sec x \tan x)-(\sec x)\left(-3 x^{2}\right)}{\left(1-x^{3}\right)^{2}}$
(C) $\frac{\left(1-x^{3}\right)\left(\sec ^{2} x\right)-(\sec x)\left(-3 x^{2}\right)}{\left(1-x^{x}\right)^{2}}$
(D) $-\frac{\sec ^{2} x}{3 x^{2}}$
6. [\#35] The rate of growth of fungus spores on a \log can be modeled by $\frac{d y}{d t}=0.85 y$, where t is measured in days. If initially there are 515 fungus spores on the log, how many will there be after 5.8 days?

AP Calc BC (Sprins, 2024) Mock Exam 1 - Solution

8. [\#36] A rectangle is inscribed between the x-axis and $y=\sqrt{20-x^{2}}$. What is the maximum area of the rectangle?
9. [\#37] Two particles are located $x_{1}(t)=t^{2}+5 t$
$x_{2}(t)=t^{3}$
At what time t are the two velocities equal on the interval $[\# 0,10]$?
10. [\#39] A box with a no top and rectangular sheet of tin with dimensions 8×14 in 2 by cutting identical squares from the four corners and folding up the sides. What is the maximum volume of the box?
11. [\#40] Find the area of the region formed by the y-axis, $y=\sin x^{2}$, and $y=e^{-x}$.

AP Calc BC (Spring, 2024) Mock Exam 1 - Solution

Answer Key

1. $\frac{1}{2} \int_{0}^{\frac{\pi}{6}} r^{2} d \theta$

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{\frac{\pi}{6}} 4 \cos ^{2} 3 \theta d \theta \\
& =2 \int_{0}^{\frac{\pi}{6}} \frac{\cos 6 \theta+1}{2} d \theta \\
& =\int_{0}^{\frac{\pi}{6}} \cos 6 \theta d \theta+\int_{0}^{6} d \theta \\
& =\frac{\pi}{6}
\end{aligned}
$$

2. Double angle formula:
$\cos 2 x=1-2 \sin ^{2} x=2 \cos ^{2} x-1$
$\frac{1-2 \sin ^{2} x-\sin ^{2} x}{2 \sin ^{2} x}$
$=\frac{1-2 \sin ^{2} x-\sin ^{2} x}{2 \sin ^{2} x}$
$=\frac{1-3 \sin ^{2} x}{2 \sin ^{2} x}$
$=\frac{1}{2 \sin ^{2} x}-\frac{3}{2}$

$$
\begin{aligned}
\frac{d y}{d x}=-\frac{-2}{2} \frac{\cos x}{\sin ^{3} x} & =-\frac{\cos x}{\sin x} \frac{1}{\sin ^{2} x} \\
& =-\cot x \cdot \csc ^{2} x
\end{aligned}
$$

3. $\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5} \ldots$

$$
\begin{aligned}
& \frac{1}{1+x}=1-x+x^{2}-x^{3}+x^{4}-x^{5} \ldots \\
& \int \frac{1}{1+x} d x=\int 1-x+x^{2}-x^{3}+x^{4}-x^{5} \ldots d x \\
& \ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\ldots \\
& \ln (1+2 x)=(2 x)-\frac{1}{2}(2 x)^{2}+\frac{1}{3}(2 x)^{3}-\ldots \\
& =2 x-2 x^{2}+\frac{8}{3} x^{3}
\end{aligned}
$$

6. $f^{\prime}(x)=3 x^{2}+1=\frac{f(2)-f(1)}{2-1}=8$
$3 x^{2}=7$
$x=\sqrt{\frac{7}{3}}$

1.527525232

7. $\frac{d y}{y}=0.85 d t$
$\ln y=0.85 t$
$y=c e^{0.85 t}$
$y(0)=515$
$y(t)=515 e^{0.85 t}$
$y(5.8)=$
$5159 \cdot 65(5.0)$
71265.44886
8. B
$y=\frac{1}{\cos x\left(1-x^{3}\right)}$
Apply \ln to both sides:
$\ln y=-\ln \cos x-\ln \left(1-x^{3}\right)$
$\frac{y^{\prime}}{y}=\frac{\sin x}{\cos x}+\frac{3 x^{2}}{1-x^{3}}$
$y^{\prime}=y\left(\tan x+\frac{3 x^{2}}{1-x^{3}}\right)$
$y^{\prime}=\frac{1}{\cos x\left(1-x^{3}\right)}\left(\tan x+\frac{3 x^{2}}{1-x^{3}}\right)=\frac{\left(1-x^{3}\right) \sec x \tan x+3 x^{2} \sec x}{\left(1-x^{3}\right)^{2}}$
9. D
$2 x^{2}+4 x-9=3-x$
$2 x^{2}+5 x-12=0$
$(2 x-3)(x+4)=0$

AP Calc BC Sprins, 2024) Mock Exam 1 - Solution

8.


```
Yz=\sigma
- X=3.1622775020..
    bound=人-1 E99,1...
-1eft-rt=0
```

```
Y1(3.162)
    19.99999969
```

9. $x_{1}{ }^{\prime}(t)=2 t+5$
$x_{2}{ }^{\prime}(t)=3 t^{2}$
$3 t^{2}-2 t-5=0$
$(3 t-5)(t+1)=0$
$t=\frac{5}{3}$
10. $\mathrm{V}(x)=x(8-2 x)(14-2 x)$

$Y \mathrm{z}=0$
 - $8=1.6390792387$.
bound $=$ - -1 E99, $1 \ldots$
left
```
Y(<1.639)
    82.98139648
```

11.

