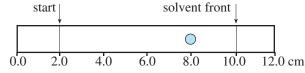
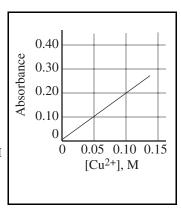
DIRECTIONS


- When you have selected your answer to each question, blacken the corresponding space on the answer sheet using a soft, #2 pencil. Make a heavy, full mark, but no stray marks. If you decide to change an answer, erase the unwanted mark very carefully.
- Make no marks on the test booklet. Do all calculations on scratch paper provided by your instructor.
- There is only one correct answer to each question. Any questions for which more than one response has been blackened will not be counted.
- Your score is based solely on the number of questions you answer correctly. It is to your advantage to answer every question.
 - 1. Which of these ions is expected to be colored in aqueous solution?

I Fe³⁺

II Ni²⁺

III $A1^{3+}$


- (A) I only
- (B) III only
- (C) I and II only
- (D) I, II, and III
- **2.** Which substance is stored in contact with water to prevent it from reacting with air?
 - (A) bromine
- (B) lithium
- (C) mercury
- (D) phosphorus
- 3. A solution of concentrated aqueous ammonia is added dropwise to 1 mL of a dilute aqueous solution of copper(II) nitrate until a total of 1 mL of the ammonia solution has been added. What observations can be made during this process?
 - (A) The colorless copper(II) nitrate solution turns blue and yields a dark blue precipitate.
 - **(B)** The colorless copper(II) nitrate solution yields a white precipitate which turns dark blue upon standing.
 - (C) The light blue copper(II) nitrate solution yields a precipitate which redissolves to form a dark blue solution.
 - **(D)** The light blue copper(II) nitrate solution turns dark blue and yields a dark blue precipitate.
- **4.** What gas is produced when dilute HNO₃ is added to silver metal?
 - (A) NO
- **(B)** H₂
- (C) NH₃
- **(D)** N_2
- A substance is analyzed by paper chromatography, giving the chromatogram shown.

What is the R_f value of the substance represented by the spot at 8.0 cm?

- **(A)** 0.80
- **(B)** 0.75
- **(C)** 0.67
- **(D)** 0.60

6. The molarity of a Cu²⁺ solution is to be determined from its absorbance, measured under the same conditions as those used to prepare this calibration curve. What will be the percent uncertainty in the concentration of a 0.050 M solution if the uncertainty in the absorbance reading is ±0.01 absorbance units?

- (A) 5%
- **(B)** 10%
- **(C)** 15%
- **(D)** 20%
- 7. A 1.50 g sample of an ore containing silver was dissolved, and all of the Ag⁺ was converted to 0.124 g of Ag₂S. What was the percentage of silver in the ore?
 - **(A)** 6.41%
- **(B)** 7.20%
- (C) 8.27%
- **(D)** 10.8%
- **8.** Methyl-*t*-butyl ether, C₅H₁₂O, is added to gasoline to promote cleaner burning. How many moles of oxygen gas, O₂, are required to burn 1.0 mol of this compound completely to form carbon dioxide and water?
 - (A) 4.5 mol
- **(B)** 6.0 mol
- (C) 7.5 mol
- **(D)** 8.0 mol
- 9. A 0.200 g sample of benzoic acid, C₆H₅COOH, is titrated with a 0.120 M Ba(OH)₂ solution. What

SubstanceMolar MassC6H5COOH122.1 g·mol-1

volume of the Ba(OH)₂ solution is required to reach the equivalence point?

- (A) 6.82 mL
- **(B)** 13.6 mL
- (C) 17.6 mL
- **(D)** 35.2 mL

10. Chlorine can be prepared by reacting HCl with MnO₂. The reaction is represented by this equation.

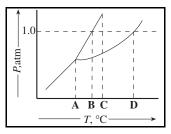
$$MnO_2(s) + 4HCl(aq) \rightarrow Cl_2(g) + MnCl_2(aq) + 2H_2O(l)$$

Assuming the reaction goes to completion what mass of concentrated HCl solution (36.0% HCl by mass) is needed to produce 2.50 g of Cl₂?

- (A) 5.15 g
- **(B)** 14.3 g
- (C) 19.4 g
- **(D)** 26.4 g
- 11. What is the Na⁺ ion concentration in the solution formed by mixing 20. mL of 0.10 M Na₂SO₄ solution with 50. mL of 0.30 M Na₃PO₄ solution?
 - (A) 0.15 M
- **(B)** 0.24 M
- (C) 0.48 M
- **(D)** 0.70 M
- **12.** A solution prepared by dissolving a 2.50 g sample of an unknown compound

Compo	and $K_{\rm b}$	
C_6H_6	2.53 °C⋅ <i>m</i> ⁻¹	

dissolved in 34.0 g of benzene, C₆H₆, boils 1.38 °C higher than pure benzene. Which expression gives the molar mass of the unknown compound?


- **(A)** $2.53 \times \frac{2.50}{1.38}$
- **(B)** $1.38 \times \frac{34.0}{2.53} \times 2.50$
- (C) $2.50 \times 10^3 \times \frac{2.53}{34.0} \times \frac{1}{1.38}$
- **(D)** $2.50 \times 10^3 \times \frac{1.38}{34.0} \times 2.53$
- 13. What is the total pressure in a 2.00 L container that holds 1.00 g He, 14.0 g CO, and 10.0 g of NO at 27.0 °C?
 - (A) 21.6 atm
- **(B)** 13.2 atm
- (C) 1.24 atm
- **(D)** 0.310 atm
- 14. What type of solid is generally characterized by having low melting point and low electrical conductivity?
 - (A) ionic
- (B) metallic
- (C) molecular
- (D) network covalent
- 15. How many nearest neighbors surround each particle in a face-centered cubic lattice?
 - (A) 4
- **(B)** 6
- **(C)** 8
- **(D)** 12

16. Hydrogen is collected over water at 22 °C and a barometer reading

Compound	Vapor Pressure at 22 °C
H ₂ O	20. mmHg

of 740 mmHg. If 300. mL of hydrogen is collected, which expression will give the volume of dry hydrogen at the same temperature and pressure?

- (A) $300 \text{ mL} \times \frac{740 \text{ mmHg} 20 \text{ mmHg}}{740}$
- **(B)** $300 \text{ mL} \times \frac{740 \text{ mmHg} + 20 \text{ mmHg}}{300 \text{ mL}}$ 740 mmHg
- 740 mmHg (C) $300 \text{ mL} \times \frac{740 \text{ mmHg}}{740 \text{ mmHg} - 20 \text{ mmHg}}$
- 740 mmHg $300 \text{ mL} \times \frac{1}{740 \text{ mmHg} + 20 \text{ mmHg}}$
- **17.** What is the normal melting point of the substance represented by the phase diagram?

- (A) A
- (B) B
- (C) C
- (D) D
- **18.** A bomb calorimeter has a heat capacity of 783 J.°C⁻¹ and contains 254 g of water, which has a specific heat of 4.184 J⋅g⁻¹⋅°C⁻¹. How much heat is evolved or absorbed by a reaction when the temperature goes from 23.73 °C to 26.01 °C?
 - (A) 1.78 kJ absorbed
- (B) 2.42 kJ absorbed
- (C) 1.78 kJ evolved
- **(D)** 4.21 kJ evolved
- **19.** Consider this equation and the associated value for ΔH° .

$$2H_2(g) + 2Cl_2(g) \rightarrow 4HCl(g)$$
 $\Delta H^{\circ} = -92.3 \text{ kJ}$ Which statement about this information is *incorrect*?

 $\Delta H^{\circ} = -92.3 \text{ kJ}$

- (A) If the equation is reversed, the ΔH^{o} value equals +92.3 kJ.
- (B) The four HCl bonds are stronger than the four bonds in H₂ and Cl₂.
- (C) The ΔH° value will be -92.3 kJ if the HCl is produced as a liquid.
- (**D**) 23.1 kJ of heat will be evolved when 1 mol of HCl(g) is produced.

20. Determine the heat of reaction for this process.

$$\text{FeO}(s) + \text{Fe}_2\text{O}_3(s) \rightarrow \text{Fe}_3\text{O}_4(s)$$

Given information:

$$2\text{Fe}(s) + \text{O}_2(g) \rightarrow 2\text{FeO}(s)$$

$$\Delta H^{\rm o} = -544.0 \text{ kJ}$$

$$4\mathrm{Fe}(s) + 3\mathrm{O}_2(g) \longrightarrow 2\mathrm{Fe}_2\mathrm{O}_3(s)$$

$$\Delta H^{\circ} = -1648.4 \text{ kJ}$$

 $\Delta H^{\circ} = +1118.4 \text{ kJ}$

$$Fe_3O_4(s) \rightarrow 3Fe(s) + 2O_2(g)$$

(B)
$$-22.2 \text{ kJ}$$

(C)
$$+249.8 \text{ kJ}$$

(D)
$$+2214.6 \text{ kJ}$$

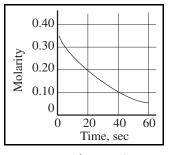
21. For which process will ΔH^{o} and ΔG^{o} be expected to be most similar?

(A)
$$2Al(s) + Fe_2O_3(s) \rightarrow 2Fe(s) + Al_2O_3(s)$$

(B)
$$2\text{Na}(s) + 2\text{H}_2\text{O}(l) \rightarrow 2\text{NaOH}(aq) + \text{H}_2(g)$$

- (C) $2NO_2(g) \rightarrow N_2O_4(g)$
- **(D)** $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$
- **22.** Use bond energies to estimate ΔH for this reaction.

$$\mathrm{H}_2(g) + \mathrm{O}_2(g) \longrightarrow \mathrm{H}_2\mathrm{O}_2(g)$$


Bond	Bond Energy
Н–Н	436 kJ⋅mol ⁻¹
O–O	142 kJ⋅mol ⁻¹
O=O	499 kJ⋅mol ⁻¹
Н–О	460 kJ⋅mol ⁻¹

- **(A)** -127 kJ
- **(B)** -209 kJ
- (C) -484 kJ
- **(D)** -841 kJ
- **23.** For a particular reaction, $\Delta H^{o} = -38.3$ kJ and $\Delta S^{o} = -113$ J·K⁻¹. This reaction is
 - (A) spontaneous at all temperatures.
 - (B) nonspontaneous at all temperatures.
 - (C) spontaneous at temperatures below 66 °C.
 - (**D**) spontaneous at temperatures above 66 °C.
- **24.** What is ΔG° for this reaction?

$$1/2N_2(g) + 3/2H_2(g) \rightleftharpoons NH_3(g)$$
 $K_p = 4.42 \times 10^4 \text{ at } 25 \text{ °C}.$

- (A) $-26.5 \text{ kJ} \cdot \text{mol}^{-1}$
- **(B)** $-11.5 \text{ kJ} \cdot \text{mol}^{-1}$
- (C) $-2.2 \text{ kJ} \cdot \text{mol}^{-1}$
- **(D)** $-0.97 \text{ kJ} \cdot \text{mol}^{-1}$

25. A reaction follows this concentration-time diagram. The instantaneous rate for this reaction at 20 seconds will be closest to which value?

- (A) $4 \times 10^{-3} \text{ M} \cdot \text{sec}^{-1}$
- **(B)** $8 \times 10^{-3} \text{ M} \cdot \text{sec}^{-1}$
- (C) $2 \times 10^{-2} \text{ M} \cdot \text{sec}^{-1}$
- **(D)** $1 \times 10^{-1} \text{ M} \cdot \text{sec}^{-1}$
- **26.** If the half-life of a reaction increases as the initial concentration of substance increases, the order of the reaction is
 - (A) zero.
- (B) first.
- (C) second.
- (D) third.
- 27. The radioisotope N-13, which has a half-life of 10 minutes, is used to image organs in the body. If an injected sample has an activity of 40 microcuries (40 μCi), what is its activity after 25 minutes in the body?
 - (**A**) 0.75 μCi
- (**B**) 3.5 μCi
- (**C**) 7.1 μCi
- (**D**) 12 μCi
- **28.** Propanone reacts with iodine in acid solution as shown in this equation.

$$CH_3C(O)CH_3 + I_2 \xrightarrow{H^+} CH_3C(O)CH_2I + HI$$

These data were obtained when the reaction was studied.

$[CH_3C(O)CH_3], M$	$[I_2], M$	[H ⁺], M	Relative Rate
0.010	0.010	0.010	1
0.020	0.010	0.010	2
0.020	0.020	0.010	2
0.020	0.010	0.020	4

What is the rate equation for the reaction?

- (A) rate = $k[CH_3C(O)CH_3][I_2]$
- **(B)** rate = $k[CH_3C(O)CH_3]^2$
- (C) rate = $k[CH_3C(O)CH_3][I_2][H^+]$
- **(D)** rate = $k[CH_3C(O)CH_3][H^+]$
- **29.** A particular reaction rate increases by a factor of five when the temperature is increased from 5 °C to 27 °C. What is the activation energy of the reaction?
 - (A) $6.10 \text{ kJ} \cdot \text{mol}^{-1}$
- **(B)** 18.9 kJ⋅mol⁻¹
- (**C**) 50.7 kJ·mol⁻¹
- **(D)** 157 kJ·mol⁻¹

30. Consider this reaction.

$$2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$$

The rate law for this reaction is rate = $k [H_2] [NO]^2$. Under what conditions could these steps represent the mechanism?

- Step 1. $2NO \rightleftharpoons N_2O_2$
- $N_2O_2 + H_2 \rightarrow N_2O + H_2O$ Step 2.
- $N_2O + H_2 \rightarrow N_2 + H_2O$ Step 3.
- (A) These steps cannot be the mechanism under any circumstances.
- **(B)** These steps could be the mechanism if step 1 is the slow step.
- (C) These steps could be the mechanism if step 2 is the slow step.
- (**D**) These steps could be the mechanism if step 3 is the slow step.
- 31. A reaction has a forward rate constant of 2.3×10^6 s⁻¹ and an equilibrium constant of 4.0×10^8 . What is the rate constant for the reverse reaction?
 - (A) $1.1 \times 10^{-15} \text{ s}^{-1}$
- **(B)** $5.8 \times 10^{-3} \text{ s}^{-1}$
- (C) $1.7 \times 10^2 \,\mathrm{s}^{-1}$
- **(D)** $9.2 \times 10^{14} \text{ s}^{-1}$
- **32.** For the reaction $2\mathbf{A}(g) + 2\mathbf{B}(g) \rightleftharpoons 3\mathbf{C}(g)$ at a certain temperature, K is 2.5×10^{-2} . For which conditions will the reaction proceed to the right at the same temperature?

_	[A], M	[B], M	[C], M	
(A)	0.10	0.10	0.10	
(B)	1.0	1.0	1.0	
(C)	1.0	0.10	0.10	
(D)	1.0	1.0	0.10	

- **33.** What is the K_b of a weak base that produces one OH⁻ per molecule if a 0.050 M solution is 2.5% ionized?
 - (A) 7.8×10^{-8}
- **(B)** 1.6×10^{-6}
- (C) 3.2×10^{-5}
- **(D)** 1.2×10^{-3}
- **34.** What is the [OH⁻] of a 0.65 M solution of NaOC1?

Acid	K _a
HOCl	2.8×10^{-8}

- (A) $4.8 \times 10^{-4} \,\mathrm{M}$
- **(B)** $1.3 \times 10^{-4} \text{ M}$
- (C) $3.5 \times 10^{-7} \text{ M}$
- **(D)** $2.1 \times 10^{-11} \text{ M}$
- **35.** Which acid is the strongest?
 - (A) H_3BO_3
- (B) H_3PO_4
- (C) H_2SO_3
- (D) HClO₃

- **36.** What is the conjugate acid of HPO_4^{2-} ?
 - (A) $H_3PO_4(aq)$
- **(B)** $H_2PO_4^-(aq)$
- (C) $H_3O^+(aq)$
- (**D**) PO₄³-(aq)
- **37.** The amount of sodium hydrogen carbonate, NaHCO₃, in an antacid tablet is to be determined

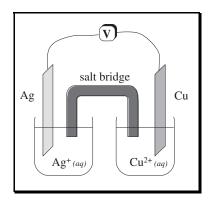
Acid	$K_{\rm a}$
H ₂ CO ₃	2.5×10^{-4}
HCO ₃ ⁻	2.4×10^{-8}

by dissolving the tablet in water and titrating the resulting solution with hydrochloric acid. Which indicator is the most appropriate for this titration?

- (A) methyl orange, $pK_{in} = 3.7$
- **(B)** bromothymol blue, $pK_{in} = 7.0$
- (C) phenolphthalein, $pK_{in} = 9.3$
- **(D)** alizarin yellow, $pK_{in} = 12.5$
- 38. How many moles of NaOCl must be added to 150 mL of 0.025 M HOCl to obtain a buffer solution with a pH = 7.50?

Acid	$K_{\rm a}$
HOCl	2.8×10^{-8}

- (A) 2.6×10^{-5}
- **(B)** 1.1×10^{-3}
- (C) 3.3×10^{-3}
- **(D)** 2.2×10^{-2}
- **39.** If equal volumes of BaCl₂ and NaF solutions are mixed, which of these combinations will not give a precipitate?


Substance	$K_{\rm sp}$
BaF ₂	1.7×10^{-7}

- (A) 0.0040 M BaCl₂ and 0.020 M NaF
- **(B)** 0.010 M BaCl₂ and 0.015 M NaF
- (C) 0.015 M BaCl₂ and 0.010 M NaF
- (**D**) 0.020 M BaCl₂ and 0.0020 M NaF
- **40.** What takes place when zinc metal is added to a aqueous solution containing magnesium nitrate and silver nitrate?
 - 1. Zn is oxidized.
 - 2. Mg²⁺ is reduced.
 - 3. Ag⁺ is reduced.
 - **4.** No reaction takes place.
 - (A) 1 and 2 only
- **(B)** 1 and 3 only
- (C) 1, 2, and 3 only
- (**D**) 4 only

Questions 41, 42, and 43 should be answered with reference to this information and diagram.

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$$
 E
 $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ E

$$E^{o} = 0.80 \text{ V}$$

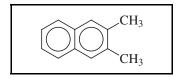
 $E^{o} = 0.34 \text{ V}$

- **41.** What is the value for ΔG° when $[Ag^{+}] = [Cu^{2+}] = 1.0 \text{ M}$?
 - (**A**) -44.4 kJ
- **(B)** -88.8 kJ
- (C) -243 kJ
- **(D)** -374 kJ
- **42.** Which expression gives the voltage for this cell if $[Cu^{2+}] = 1.00 \text{ M}$ and $[Ag^{+}] = 0.010 \text{ M}$?
 - (A) 0.46 V + 0.0591 V
 - **(B)** $0.46 \text{ V} + 2 \times 0.0591 \text{ V}$
 - (C) 0.46 V 0.0591 V
 - **(D)** $0.46 \text{ V} 2 \times 0.0591 \text{ V}$
- **43.** Which increases immediately if the surface area of the silver electrode is increased?
 - (A) overall cell voltage
 - **(B)** rate of change of [Ag⁺]
 - (C) mass of Cu electrode
 - **(D)** change in ratio of electrode masses; $\Delta \left(\frac{\text{mass of Cu}}{\text{mass of Ag}} \right)$
- **44.** In the galvanizing process, iron is coated with zinc. The resulting chemical protection is most similar to that provided when
 - (A) a magnesium bar is connected to an iron pipe.
 - **(B)** an iron can is plated with tin.
 - (C) copper pipes are connected using lead solder.
 - (**D**) a copper pipe is covered with epoxy paint.

- **45.** How many unpaired electrons are in a gaseous Fe²⁺ ion in the ground state?
 - **(A)** 0
- **(B)** 2
- **(C)** 4
- **(D)** 6
- **46.** Which element has the smallest first–ionization energy?
 - (A) Mg
- **(B)** Al
- (**C**) Si
- **(D)** P
- **47.** Which set of orbitals is listed in the sequential order of filling in a many-electron atom?
 - (A) 3s, 3p, 3d
- **(B)** 3d, 4s, 4p
- (**C**) 3*d*, 4*p*, 5*s*
- **(D)** 4p, 4d, 5s
- **48.** Which set is expected to show the smallest difference in first–ionization energy?
 - (A) He, Ne, Ar
- **(B)** B, N, O
- (C) Mg, Mg^+, Mg^{2+}
- (D) Fe, Co, Ni
- **49.** When the atoms Li, Be, B, and Na are arranged in order of increasing atomic radius, what is the correct order?
 - (A) B, Be, Li, Na
- **(B)** Li, Be, B, Na
- (C) Be, Li, B, Na
- **(D)** Be, B, Li, Na
- **50.** Which species has the same shape as the NO_3^- ion?
 - (A) SO_3

(B) SO_3^{2-}

- (**C**) ClF₃
- **(D)** ClO_3^-
- **51.** What is the formal charge on the central atom in N₂O?


- (A) +1
- **(B)** 0
- (C) -1
- **(D)** -2
- **52.** How many bonding pairs and lone pairs surround the central atom in the I₃⁻ ion?

_	Bonding Pairs	Lone Pairs	
(A)	2	2	
(B)	2	3	
(C)	3	2	
(D)	4	3	

- **53.** The nitrogen atoms in NH₃, NH₂⁻, and NH₄⁺ are all surrounded by eight electrons. When these three species are arranged in order of increasing H–N–H bond angle, what is the correct order?
 - (**A**) NH₃, NH₂⁻, NH₄⁺
- **(B)** NH_4^+ , NH_2^- , NH_3
- (C) NH₃, NH₄⁺, NH₂⁻
- **(D)** NH₂⁻, NH₃, NH₄⁺
- **54.** What hybrid orbitals are employed by carbon atoms **1,2**, and **3**, respectively, as labeled in the compound shown?

- (A) sp^3 , sp, sp
- **(B)** sp^2 , sp^2 , sp
- (C) sp^3 , sp^2 , sp
- **(D)** sp^3, sp^2, sp^2
- **55.** In which pair, or pairs, is the stronger bond found in the first species?
 - 1. O₂-, O₂
- **2.** N_2 , N_2^+
- 3. NO+, NO-

- (**A**) 1 only
- **(B)** 2 only
- (C) 1 and 3 only
- (**D**) 2 and 3 only
- **56.** What is the molecular formula of this chemical structure?

- (A) $C_{10}H_{12}$
- **(B)** $C_{10}H_{14}$
- (C) $C_{12}H_{12}$
- **(D)** $C_{12}H_{14}$

- **57.** Which is the formula for an alkyne?
 - (A) C_2H_4
- **(B)** C_3H_6
- (C) C_3H_8
- (**D**) C_4H_6
- **58.** How many isomers have the formula C_3H_8O ?
 - **(A)** 2
- **(B)** 3
- **(C)** 4
- **(D)** 5
- **59.** Which type of organic compound is most resistant to oxidation by acidified potassium dichromate?
 - (A) acid

- (B) alcohol
- (C) aldehyde
- (D) alkene
- **60.** What product, in addition to water, is produced by this reaction?

$$CH_3OH + C_6H_5COOH \rightarrow$$

(A)
$$H_3C$$
 \longrightarrow C O C OH

(B)
$$\overset{O}{\longleftarrow}$$
 $\overset{C}{\longleftarrow}$ $\overset{C}{\longleftarrow}$ $\overset{C}{\longleftarrow}$ $\overset{C}{\longleftarrow}$

END OF TEST

US National Chemistry Olympiad – 2000 National Examination—Part I SCORING KEY

Number Answer	Number Answer	Number Answer
1. C	21. A	41. B
2. D	22. A	42. D
3. C	23. C	43. B
4. A	24. A	44. A
5. B	25. A	45. C
6. B	26. A	46. B
7. B	27. C	47. C
8. C	28. D	48. D
9. A	29. C	49. A
10. B	30. C	50. A
11. D	31. B	51. A
12. C	32. D	52. B
13. B	33. C	53. D
14. C	34. A	54. C
15. D	35. D	55. D
16. A	36. B	56. C
17. B	37. A	57. D
18. D	38. C	58. B
19. C	39. D	59. A
20. B	40. B	60. D