
DIRECTIONS

- When you have selected your answer, blacken the corresponding space on the answer sheet with a soft, black #2 pencil. Make a heavy, full mark, but no stray marks. If you decide to change an answer, erase the unwanted mark very carefully.
- Make no marks in the test booklet. Do all calculations on scratch paper provided by your examiner.
- There is only one correct answer to each question. Any questions for which more than one response has been blackened will not be counted.
- Your score is based solely on the number of questions you answer correctly. It is to your advantage to answer every question.
- The best strategy is to arrive at your own answer to a question before looking at the choices. Otherwise, you may be misled by plausible, but incorrect, responses.
 - 1. Which metal reacts most vigorously with water?
 - (A) Ca
- **(B)** K
- (C) Mg
- **(D)** Na
- 2. Which substance produces an acidic solution when it is bubbled into water?
 - (A) CO₂
- **(B)** Ar
- (C) NH₃
- (**D**) CH₄
- 3. Which substance is the least soluble in H_2O ?
 - (A) K_2CO_3
- (**B**) $KHCO_3$
- (C) Ca(HCO₃)₂
- (**D**) CaCO₃
- **4.** What value should be reported for the buret reading shown?

- (A) 22.3 mL
- **(B)** 22.30 mL
- (C) 22.36 mL
- (**D**) 22.40 mL
- **5.** Which technique is recommended for determining the odor of an unknown liquid in the laboratory?
 - (A) Hold a test tube of the liquid under the nose and inhale the vapor.
 - **(B)** Transfer a few drops of the liquid to the desk top and inhale the vapor from there.
 - **(C)** Use a medicine dropper to collect a small quantity of the vapor and squirt this under the nose while inhaling.
 - (**D**) Use a hand to fan some of the vapor from the test tube to the nose and inhale.
- **6.** A colorless solution is known to contain one of these ions. Which ion is present if adding dilute HCl produces a white precipitate that dissolves when the solution is warmed?
 - (A) Ag⁺
- **(B)** Cu²⁺
- (C) Hg_2^{2+}
- **(D)** Pb²⁺

- 7. A student is asked to measure 12 mL of a liquid as precisely as possible. Which piece of equipment should she select for this task?
 - (A) 25 mL beaker
 - (B) 25 mL graduated cylinder
 - (C) 25 mL conical flask
 - (D) 25 mL volumetric flask
- **8.** Which separation technique is based on differences in the volatility of the substances to be separated?
 - (A) filtration
- (B) distillation
- (C) solvent extraction
- (D) paper chromatography
- **9.** If 1.50 g of H₂C₂O₄·2H₂O were heated to drive off the water of hydration, how much anhydrous H₂C₂O₄ would remain?
 - (**A**) 0.34 g
- **(B)** 0.92 g
- **(C)** 1.07 g
- **(D)** 1.50 g
- **10.** How many H atoms are in 3.4 g of $C_{12}H_{22}O_{11}$?
 - (A) 6.0×10^{23}
- **(B)** 1.3×10^{23}
- (C) 3.8×10^{22}
- **(D)** 6.0×10^{21}
- **11.** How many mL of 8.00 M HCl are needed to prepare 150. mL of a 1.60 M HCl solution?
 - (A) 30.0 mL
- (**B**) 24.0 mL
- (**C**) 18.8 mL
- (**D**) 12.0 mL
- **12.** Analysis of a compound known to contain only Mg, P, and O gives this analysis.

21.8% Mg

27.7% P

50.3% O

What is its empirical formula?

- (A) MgPO₂
- (\mathbf{B}) MgPO₃
- (C) $Mg_2P_2O_7$
- **(D)** $Mg_3P_2O_8$

13. The reaction of ethanol, C₂H₅OH, with oxygen is a popular classroom demonstration. Balance the equation to find the number of moles of gaseous products formed per mole of ethanol.

 $\underline{\hspace{1cm}} C_2H_5OH(g) + \underline{\hspace{1cm}} O_2(g) \rightarrow \underline{\hspace{1cm}} CO_2(g) + \underline{\hspace{1cm}} H_2O(g)$

(A) 2

- **(B)** 3
- **(C)** 4
- **(D)** 5
- **14.** Ammonia is produced in accordance with this equation. $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

In a particular experiment, 0.25 mol of NH_3 is formed when 0.5 mol of N_2 is reacted with 0.5 mol of H_2 . What is the percent yield?

(A) 75%

(B) 50%

(C) 33%

- **(D)** 25%
- 15. A 20.0 mL sample of a Cu²⁺ solution was diluted to 250.0 mL. A portion of this solution was found to have an absorbance of 0.15 under the same conditions that were used to generate the given absorbance vs. [Cu²⁺] graph. What was the concentration of Cu²⁺ ions in the original sample?

- (A) 0.0060 M
- **(B)** 0.075 M
- (C) 0.30 M
- **(D)** 0.94 M
- **16.** Under which conditions will a gas behave most ideally?
 - (A) low P and high T
- **(B)** low P and low T
- (C) high P and low T
- (**D**) high P and high T
- **17.** The mass of 560 cm³ of a gas at 0 °C and 1 atm is 1.60 g. Which gas could it be?
 - (A) O_2
- **(B)** CO₂
- (C) SO₂
- (**D**) Cl₂
- **18.** Oxygen, which is 16 times as dense as hydrogen, diffuses
 - (**A**) 1/16 times as fast.
- **(B)** 1/4 times as fast.
- (C) 4 times as fast.
- **(D)** 16 times as fast.
- **19.** How is the vapor pressure of a liquid in a closed container affected when the quantity of liquid is doubled at constant temperature?
 - (A) The vapor pressure increases.
 - (B) The vapor pressure decreases.
 - (C) The vapor pressure stays the same.
 - **(D)** The vapor pressure may increase or decrease, depending on the liquid.

- 20. A low molar heat of fusion is expected for a solid that is
 - (A) ionic.
- (B) metallic.
- (C) molecular.
- (D) network covalent.
- **21.** Which gas is least suitable for collection over water?
 - (A) Ar
- **(B)** O_2
- (**C**) CO₂
- **(D)** NH₃
- **22.** Which characteristic is most useful for determining that a substance is a metal?
 - (A) conductivity
- (B) hardness
- (C) melting point
- (**D**) X-ray pattern
- **23.** For which of these is ΔH_f^o not equal to zero?
 - (A) $Br_2(l)$
- **(B)** Fe(s)
- (C) $I_2(s)$
- **(D)** $O_3(g)$
- **24.** The enthalpy change for which reaction represents the standard enthalpy of formation for hydrogen cyanide, HCN?
 - (A) $H(g) + C(graphite) + N(g) \rightarrow HCN(g)$
 - **(B)** $\frac{1}{2}$ H₂(g) + C(graphite) + $\frac{1}{2}$ N₂(g) \rightarrow HCN(g)
 - (C) $HCN(g) \rightarrow \frac{1}{2}H_2(g) + C(graphite) + \frac{1}{2}N_2(g)$
 - **(D)** $H_2(g) + 2C(graphite) + N_2(g) \rightarrow 2HCN(g)$
- **25.** What is the standard enthalpy of formation of MgO(*s*) if 300.9 kJ is evolved when 20.15 g of MgO(*s*) is formed by the combustion of magnesium under standard conditions?
 - **(A)** $-601.8 \text{ kJ} \cdot \text{mol}^{-1}$
- (B) −300.9 kJ·mol⁻¹
- (C) $+300.9 \text{ kJ} \cdot \text{mol}^{-1}$
- **(D)** +601.8 kJ⋅mol⁻¹
- **26.** Which combination of solutions of HCl and NaOH would produce the largest ΔT ?
 - (A) 50 mL of 1 M HCl with 50 mL of 1 M NaOH
 - (B) 50 mL of 2 M HCl with 50 mL of 2 M NaOH
 - (C) 100 mL of 1 M HCl with 50 mL of 2 M NaOH
 - (D) 100 mL of 1 M HCl with 100 mL of 1 M NaOH
- 27. Which change occurs with the largest increase in entropy at 25 °C?
 - **(A)** $\operatorname{Br}_2(l) \to \operatorname{Br}_2(g)$
 - **(B)** $C(graphite) \rightarrow C(diamond)$
 - (C) $H_2O(s) \rightarrow H_2O(l)$
 - **(D)** $HCl(g) + H_2O(l) \rightarrow H_3O^+(aq) + Cl^-(aq)$

28. What are the signs of ΔH° and ΔS° for a reaction that is spontaneous at all temperatures?

	ΔH°	ΔS°	
(A)	+	+	
(B)	+	_	
(C)	_	+	
(D)	_	_	

29. Iodide ion is oxidized by acidified dichromate ions as shown in this equation.

$$\begin{array}{c} {\rm Cr_2O_7}^{2-}(aq) + 9 \Gamma(aq) + 14 {\rm H^+}(aq) \to \\ 2 {\rm Cr^{3+}}(aq) + 3 {\rm I_3^-}(aq) + 7 {\rm H_2O}(l) \end{array}$$

These data were obtained when the reaction was studied at a constant pH.

Experiment	$[Cr_2O_7^{2-}], M$	[I ⁻], M	Rate, M·s ⁻¹
1	0.0040	0.010	0.00050
2	0.0080	0.010	0.0010
3	0.0120	0.020	0.0060

What is the order of the reaction with respect to $\operatorname{Cr}_2\operatorname{O}_7^{2-}(aq)$ and $\operatorname{I}^-(aq)$?

- (A) first order with respect to both $Cr_2O_7^{2-}$ and I^-
- **(B)** second order with respect to both $Cr_2O_7^{2-}$ and I^-
- (C) second order with respect to $Cr_2O_7^{2-}$ and first order with respect to I
- **(D)** first order with respect to $Cr_2O_7^{2-}$ and second order with respect to I-
- **30.** The reaction $A \rightarrow B$ is first order in A. Which plot will be linear?
 - (A) [A] vs. time
- (B) ln [A] vs. time
- (C) $1/[A]^2$ vs. time
- (D) 1/[A] vs. time
- 31. One of the steps in the manufacture of nitric acid is the oxidation of ammonia shown in this equation.

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$

If gaseous water appears at a rate of 0.025 mol·min⁻¹, at what rate does ammonia disappear?

- (A) 0.0040 mol·min⁻¹
- **(B)** $0.017 \text{ mol·min}^{-1}$
- (C) 0.038 mol·min⁻¹
- **(D)** $0.150 \text{ mol} \cdot \text{min}^{-1}$
- 32. This reaction is first order with respect to N_2O_5 . $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

If the half-life for this reaction is 19.0 minutes, what is the rate constant, k?

- (A) $0.0158 \, \text{min}^{-1}$
- **(B)** 0.0263 min^{-1}
- (C) 0.0365 min^{-1}
- **(D)** 0.0526 min^{-1}

- 33. For a system in equilibrium, the rate constant for the forward reaction is represented by k_f and the rate constant for the reverse reaction is represented by k_r . Which equation represents the equilibrium constant for this reaction in the forward direction?
 - (A) $K_{eq} = k_f \cdot k_r$
- $(\mathbf{B}) \quad K_{eq} = \frac{k_f}{k_{-}}$
- (C) $K_{eq} = \frac{k_r}{k_f}$
- $(\mathbf{D}) \quad K_{eq} = \frac{1}{k_f} \cdot k_r$

Questions 34 and 35 should both be answered with reference to this reaction, for which ΔH^{o} is negative.

$$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$

- **34.** Which would increase the partial pressure of $NO_2(g)$ at equilibrium?
 - (A) decreasing the volume of the system
 - (B) adding a noble gas to increase the pressure of the
 - (C) removing some NO(g) from the system
 - (D) adding an appropriate catalyst
- 35. At a certain temperature the equilibrium concentrations for this system are:

$$[NO] = 0.52M; [O_2] = 0.24M; [NO_2] = 0.18M.$$

What is the value of $K_{\rm C}$ at this temperature?

- (A) 0.063
- **(B)** 0.50
- **(C)** 1.4
- **(D)** 2.0
- **36.** What is the pH of a 0.025 M solution of KOH?
 - **(A)** 1.60
- **(B)** 3.69
- **(C)** 10.31

HA

(D) 12.40

37. What is the $[H^+]$ of a 0.075 M solution of the

(A)
$$6.1 \times 10^{-4} \text{ M}$$

(B)
$$2.2 \times 10^{-4} \text{ M}$$

Equilibrium Constant, K_{s}

 4.8×10^{-8}

(C)
$$6.0 \times 10^{-5} \text{ M}$$

(D)
$$4.8 \times 10^{-8} \text{ M}$$

- **38.** Which salt produces the most alkaline solution at a concentration of 0.1 M?
 - (A) KNO₃
- (B) MgCl₂
- (C) NH₄Cl
- (D) NaNO₂
- **39.** A 0.052 M solution of benzoic acid, C₆H₅COOH, is titrated with a strong

Equilibrium Constant,
$$K_a$$

 $C_6H_5COOH 6.3 \times 10^{-5}$

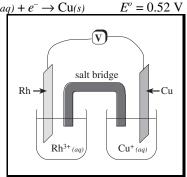
base. What is the [H⁺] of the solution one-half way to the equivalence point?

- (A) $6.3 \times 10^{-5} \text{ M}$
- **(B)** $1.8 \times 10^{-3} \text{ M}$
- (C) $7.9 \times 10^{-3} \text{ M}$
- **(D)** $2.6 \times 10^{-2} \text{ M}$

- 40. A buffer solution made with NH₃ and NH₄Cl has a pH of 10.0. Which procedure(s) could be used to lower the pH?
 - 1. adding HCl
 - 2. adding NH₃
 - 3. adding NH₄Cl
 - (A) 1 only
- (B) 2 only
- (C) 1 and 3 only
- **(D)** 2 and 3 only
- 41. How many moles of calcium fluoride, CaF₂, must be dissolved in 2.0 L

$K_{\rm sp}$ at 25 °C		
CaF ₂	1.6×10^{-10}	

of water at 25 °C to form a saturated solution?


- (A) $2.6 \times 10^{-2} \text{ mol}$
- **(B)** $1.3 \times 10^{-3} \text{ mol}$
- (C) $6.8 \times 10^{-4} \text{ mol}$
- **(D)** $3.4 \times 10^{-4} \text{ mol}$
- **42.** Which equation represents an oxidation-reduction reaction?
 - (A) $H_2SO_4 + 2NH_3 \rightarrow (NH_4)_2SO_4$
 - (B) $H_2SO_4 + Na_2CO_3 \rightarrow Na_2SO_4 + H_2O + CO_2$
 - (C) $2K_2CrO_4 + H_2SO_4 \rightarrow K_2Cr_2O_7 + K_2SO_4 + H_2O$
 - (D) $2H_2SO_4 + Cu \rightarrow CuSO_4 + 2H_2O + SO_2$

Ouestions 43 and 44 should be answered with reference to the voltaic cell shown and these half-reactions.

 $Rh^{3+}(aq) + 3e^- \rightarrow Rh(s)$

$$E^{o} = 0.80 \text{ V}$$

 $Cu^+(aq) + e^- \rightarrow Cu(s)$

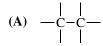
- **43.** What is the direction of electron flow in the external circuit if the concentrations of Cu⁺ and Rh³⁺ are each 1 M?
 - (A) from the Rh anode to the Cu cathode
 - (B) from the Rh cathode to the Cu anode
 - (C) from the Cu anode to the Rh cathode
 - (**D**) from the Cu cathode to the Rh anode
- **44.** What is the voltage of this cell if the concentrations of Cu⁺ and Rh³⁺ are each 1 M?
 - (A) 0.28 V
- **(B)** 0.76 V **(C)** 1.32 V
- **(D)** 2.36 V

- **45.** What is the correct order when the substances O_2 , H_2O , OF₂, and H₂O₂ are arranged in order of increasing oxidation number for oxygen?
 - (**A**) O₂, H₂O, OF₂, H₂O₂
- **(B)** H₂O, H₂O₂, O₂, OF₂
- (**C**) H₂O₂, O₂, H₂O, OF₂
- **(D)** OF₂, O₂, H₂O₂, H₂O
- 46. Which element has an outer electron configuration of s^2p^4 ?
 - (A) Ca
- (**B**) Cr
- (C) Ge
- **(D)** Se
- 47. How many unpaired electrons does a gaseous atom of phosphorus, P, have in its ground state?
 - **(A)** 1
- **(B)** 3
- **(C)** 5
- **(D)** 7
- **48.** Which element has the lowest first ionization energy?
 - (A) B
- (**B**) C
- (C) Al
- (**D**) Si
- **49.** Which of these elements has the greatest electronegativity?
 - (A) Br
- **(B)** N
- (**C**) O
- **(D)** S
- **50.** Which oxide produces the most acidic solution when 0.1 mol is added to 1 L of H_2O ?
 - (A) BaO
- (\mathbf{B}) BaO₂
- (C) SO₂
- (\mathbf{D}) SO₃
- **51.** Which set contains only covalently bonded molecules?
 - (A) BCl₃, SiCl₄, PCl₃
- (B) NH_4Br , N_2H_4 , HBr
- (C) I₂, H₂S, NaI
- **(D)** Al, O_3 , As_4
- **52.** What is the total number of valence electrons in the chlorate ion, ClO₃⁻?
 - (A) 24
- **(B)** 26
- (C) 28
- **(D)** 32
- **53.** The concept of resonance is used to describe molecular structures which
 - (A) oscillate between two structures.
 - (B) have mirror images.
 - (C) can be isolated in several isomeric forms.
 - (**D**) have more than one possible Lewis structure.
- **54.** What is the arrangement in space of the hybrid orbitals of an atom with sp^2 hybridization?
 - (A) linear
- (B) bent
- (C) pyramidal
- (D) trigonal planar
- **55.** Which species is isoelectronic with NO₂⁺?
 - (A) N₂O

(B) NO_2

- (C) NH₂
- (**D**) SO₂

56. Which species can form intermolecular hydrogen bonds with other molecules or ions of the same type?


1. HF

2. CH₃F

3. NH₄+

- (A) 1 only
- **(B) 3** only
- (C) 1 and 3 only
- (D) 1, 2 and 3
- **57.** How many isomers have the molecular formula C_5H_{12} ?
 - **(A)** 1
- **(B)** 2
- **(C)** 3
- **(D)** 5
- **58.** Carbon is found in the highest oxidation state in which of these classes of organic compounds?
 - (A) carboxylic acids
- (B) alcohols
- (C) aldehydes
- (D) alkynes

59. Which structural formula represents a mono-unsaturated aliphatic hydrocarbon?

$$(\mathbf{B}) \quad - \overset{\mid}{\mathbf{C}} - \overset{\mid}{\mathbf{C}} = \overset{\mid}{\mathbf{C}} - \cdots$$

(C)

- **60.** Which compound has the highest boiling point?
 - (A) CH₃CH₂CH₃
- (**B**) CH₃OCH₂CH₃
- (C) CH_3 —C— CH_3
- (**D**) CH₃CH₂CH₂OH

END OF TEST

Page	8
------	---

U.S. NATIONAL CHEMISTRY OLYMPIAD 2000 LOCAL SECTION EXAM — KEY

Number Answer	Number Answer	Number Answer
1. B	21. D	41. C
2. A	22. A	42. D
3. D	23. D	43. C
4. C	24. B	44. A
5. D	25. A	45. B
6. D	26. B	46. D
7. B	27. A	47. B
8. B	28. C	48. C
9. C	29. D	49. C
10. B	30. B	50. D
11. A	31. B	51. A
12. C	32. C	52. B
13. D	33. B	53. D
14. A	34. A	54. D
15. D	35. B	55. A
16. A	36. D	56. A
17. C	37. C	57. C
18. B	38. D	58. A
19. C	39. A	59. B
20. C	40. C	60. D