ABBREVIATIONS AND SYMBOLS									
amount of substance	n	equilibrium constant	K	milli- prefix	m				
ampere	A	Faraday constant	F	molal	m				
atmosphere	atm	formula molar mass	M	molar	M				
atomic mass unit	u	free energy	G	mole	mol				
atomic molar mass	\boldsymbol{A}	frequency		Planck's constant	h				
Avogadro constant	$N_{ m A}$	gas constant	R	pressure	P				
Celsius temperature	$^{\circ}\mathrm{C}$	gram	g	rate constant	k				
centi- prefix	c	hour	h	second	S				
coulomb	C	joule	J	speed of light	c				
electromotive force	E	kelvin	K	temperature, K	T				
energy of activation	E_{a}	kilo- prefix	k	time	t				
enthalpy	H	liter	L	volt	V				
entropy	S	measure of pressure m	ımHg	volume	V				

CONSTANTS
$R = 8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$
$R = 0.0821 \text{ L} \cdot \text{atm} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$
$1 F = 96,500 \text{ C} \cdot \text{mol}^{-1}$
$1 F = 96,500 \text{ J} \cdot \text{V}^{-1} \cdot \text{mol}^{-1}$
$N_{\rm A} = 6.022 \times 10^{23} \; {\rm mol^{-1}}$
$h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$
$c = 2.998 \times 10^8 \text{ m} \cdot \text{s}^{-1}$

PERIODIC TABLE OF THE ELEMENTS

1 H 1.008																	2 He 4.003
3	4											5	6	7	8	9	10
Li 6.941	Be 9.012											B 10.81	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
11	12											13	14	15	16	17	18
Na 22.99	Mg 24.31											Al 26.98	Si 28.09	P 30.97	S 32.07	Cl 35.45	Ar 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.61	As 74.92	S e 78.96	Br 79.90	Kr 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb 85.47	Sr 87.62	Y 88.91	Zr 91.22	Nb 92.91	Mo 95.94	Tc (98)	Ru 101.1	Rh 102.9	Pd 106.4	Ag 107.9	Cd 112.4	In 114.8	Sn 118.7	Sb 121.8	Te 127.6	I 126.9	Xe 131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs 132.9	Ba 137.3	La 138.9	Hf 178.5	Ta 181.0	W 183.8	Re 186.2	Os 190.2	Ir 192.2	Pt 195.1	Au 197.0	Hg 200.6	Tl 204.4	Pb 207.2	Bi 209.0	Po (209)	At (210)	Rn (222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		118
Fr (223)	Ra 226.0	Ac 227.0	Rf (261)	Db (262)	Sg (263)	Bh (262)	Hs (265)	Mt (266)	(269)	(272)	(277)		(289)		(289)		(293)

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce 140.1	Pr 140.9	Nd 144.2	Pm (145)	Sm 150.4	Eu 152.0	Gd 157.3	Tb 158.9	Dy 162.5	Ho 164.9	Er 167.3	Tm 168.9	Yb 173.0	Lu 175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

DIRECTIONS

- When you have selected your answer, blacken the corresponding space on the answer sheet with a soft, black #2 pencil. Make a heavy, full mark, but no stray marks. If you decide to change an answer, erase the unwanted mark very carefully.
- Make no marks in the test booklet. Do all calculations on scratch paper provided by your examiner.
- There is only one correct answer to each question. Any questions for which more than one response has been blackened will not be counted.
- Your score is based solely on the number of questions you answer correctly. It is to your advantage to answer every question.
- The best strategy is to arrive at your own answer to a question before looking at the choices. Otherwise, you may be misled by plausible, but incorrect, responses.
 - 1. Which metal reacts most vigorously with water?
 - (**A**) Al
- **(B)** Ca
- **(C)** Fe
- **(D)** K

2. Which are strong acids?

I. HI

II. HNO₃

III. H₂SO₃

(A) II only

(B) I and II only

(C) II and III only

(D) I, II and III

- **3.** What products result when aqueous solutions of CuCl₂ and (NH₄)₂S are mixed?
 - (A) CuS(aq) and $NH_4Cl(s)$
- **(B)** CuS(s) and $NH_4Cl(aq)$
- (C) CuS(aq) and $NH_4Cl(g)$
- **(D)** CuS(s) and $NH_4Cl(s)$
- **4.** Which element has the highest electrical conductivity?
 - (**A**) Ga
- **(B)** Ge
- (C) As
- **(D)** Si
- 5. The molar mass of a volatile liquid (bp < 90°C) is to be determined by measuring the density of its vapor in an Erlenmeyer flask capped with Al foil with a pinhole to allow the vapor to escape. A sample of the liquid is added to the pre-weighed flask that is heated in a water bath until the liquid has evaporated, after which the flask is dried and reweighed. Which piece of information is *not* required to determine the molar mass of the liquid?
 - (A) barometric pressure
- (B) mass of liquid sample
- (C) temperature of water
- **(D)** volume of the flask
- **6.** Which set of reactants produces a gaseous product?

I. 6 M HNO₃(aq) + Cu(s)

II. 6 M $HCl(aq) + CaCO_3(s)$

(A) I only

- (B) II only
- (C) Both I and II
- (**D**) Neither **I** nor **II**
- **7.** Which metal, when exposed to air, forms an oxide coating that protects the metal from further reaction?
 - (**A**) Al
- **(B)** Cu
- (C) Fe
- **(D)** Zn

- **8.** The principal reason that solid sodium hydroxide is *not* used as a primary standard for acid-base titrations is that it
 - (A) absorbs water from air.
 - (B) has a low molar mass.
 - (C) reacts slowly with many acids.
 - (**D**) ionizes in water.
- **9.** A chloride salt of rhenium contains 63.6% Re by mass. What is its empirical formula?
 - (A) ReCl
- (**B**) ReCl₂
- (C) $ReCl_3$
- **(D)** $ReCl_5$
- 10. The amount of chloride ior in a water sample is to be determined by adding excess silver nitrate. If

on	Molar Mass, g⋅mol ⁻¹									
	AgNO ₃	169.91								
	AgCl	143.25								

1.0 g of silver chloride is precipitated, what mass of chloride ion is in the original sample?

- (A) 0.25 g
- **(B)** 0.34 g
- **(C)** 0.50 g
- **(D)** 0.75 g

11.
$$_Sn^{2+}(aq) + _MnO_4^{-}(aq) + _H^{+}(aq)$$

 $_Sn^{4+}(aq) + _Mn^{2+}(aq) + _H_2O(l)$

When this equation for the reaction of $\operatorname{Sn}^{2+}(aq)$ and $\operatorname{MnO}_4^-(aq)$ is balanced correctly, what is the ratio, $\operatorname{Sn}^{2+}/\operatorname{MnO}_4^-$?

- **(A)** 1/1
- **(B)** 1/2
- **(C)** 2/1
- **(D)** 5/2
- **12.** How many millimoles of methane, CH₄, are present in 6.4 g of this gas?
 - **(A)** 0.40

(B) 4.0

(C) 40.

(D) 4.0×10^2

- **13.** A 1.50 mL sample of a sulfuric acid solution from an automobile storage battery is titrated with 1.47 M sodium hydroxide solution to a phenolphthalein endpoint, requiring 23.70 mL. What is the molarity of the sulfuric acid solution?
 - (A) 23.2 M
- **(B)** 11.6 M
- (C) 6.30 M
- **(D)** 0.181 M
- **14.** According to the equation

$$SnO_2 + 2H_2$$
 $Sn + 2H_2O$

What volume of hydrogen, measured at 1 atm and 273 K, is required to react with 2.00 g of SnO₂?

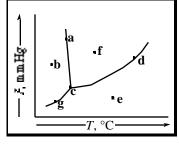
- (A) 0.00133 L
- **(B)** 0.00265 L
- (C) 0.297 L
- **(D)** 0.595 L
- **15.** Which terms are matched correctly?
 - (A) high vapor pressures

high H_{vap} values

(B) high H_{vap} values

low boiling points

(C) low vapor pressure


high boiling points

(D) low boiling points

low vaporization rates

- **16.** Three balloons are filled with the same number of atoms of He, Ar, and Xe, respectively. Which statement is true under the same conditions of temperature and pressure?
 - (A) The balloons contain the same mass of gas.
 - **(B)** All balloons have the same volume.
 - (C) The densities of the three gases are the same.
 - (D) The average speed of the different types of atoms is the same.
- **17.** A 0.239 g sample of a gas in a 100-mL flask exerts a pressure of 600 mmHg at 14 °C. What is the gas?
 - (A) chlorine
- (B) nitrogen
- (C) krypton
- (D) xenon
- 18. Which parameter affects the vapor pressure of a liquid?
 - (A) volume of the liquid
 - (B) surface area of the liquid
 - (C) volume of space above the liquid
 - (D) temperature of the liquid

19. Which points in this phase diagram represent conditions of temperature and pressure where liquid will be present?

- (A) a, b, and g only
- (B) a, c, d and g only
- (C) a, c, d and f only
- (D) c, d, e and g only
- **20.** Which compound is expected to be the most soluble in water at 25 °C?
 - **(A)** $N_2(g)$
- **(B)** $O_2(g)$
- (C) $(C_2H_5)_2NH(l)$
- **(D)** $C_2H_5OC_2H_5(l)$
- **21.** A hard, crystalline solid with a high melting point does not conduct electricity in any phase. This solid is most likely
 - (A) an ionic solid.
 - (B) a metallic solid.
 - (C) a molecular solid.
 - (**D**) a network covalent solid.
- **22.** For the formation of one mole of each of these gases from their elements, which reaction is most endothermic?
 - (A) CO $(H_f^o = -110.5 \text{ kJ} \cdot \text{mol}^{-1})$
 - **(B)** NO₂ ($H_{f}^{o} = +33.9 \text{ kJ} \cdot \text{mol}^{-1}$)
 - (C) O_3 ($H_f^o = +142.2 \text{ kJ} \cdot \text{mol}^{-1}$)
 - **(D)** SO_2 ($H_f^o = -300.4 \text{ kJ} \cdot \text{mol}^{-1}$)
- 23. The specific heats of several metals are given in the table. If the same number of Joules were applied to the same mass of each metal, which metal

n	Specific H	leat, $J \cdot g^{-1} \cdot {}^{\circ}C^{-1}$
11	Al	0.900
	Au	0.129
	Cu	0.385
al	Hg	0.139

would show the greatest temperature change?

- (**A**) Al
- **(B)** Au
- (**C**) Cu
- **(D)** Hg

24. $4\text{Li}(s) + O_2(g)$ $2Li_2O(s)$

At 25 °C, H° for this reaction is -598.8 kilojoules per mole of Li₂O(s) formed. What mass of Li should be reacted with excess $O_2(g)$ in order to release 150. kJ?

- **(A)** 0.874 g
- **(B)** 1.74 g
- (C) 3.48 g
- **(D)** 6.98 g
- **25.** When these substances are arranged in order of increasing S° values at 25 °C, what is the correct order?
 - (A) Na(s), $Cl_2(g)$, NaCl(s)
- **(B)** NaCl(s), Cl₂(g), Na(s)
- (C) $Cl_2(g)$, NaCl(s), Na(s)
- **(D)** Na(s), NaCl(s), Cl₂(g)
- **26.** The H° and S° values for a particular reaction are -60.0 kJ and -0.200 kJ⋅K⁻¹ respectively. Under what conditions is this reaction spontaneous?
 - (A) all conditions
- **(B)** T < 300 K
- (C) T = 300 K
- **(D)** T > 300 K
- **27.** For the reaction;

$$2NO_2(g)$$
 $2NO(g) + O_2(g)$

at a certain temperature, the initial rate of decomposition of NO₂ is 0.0036 mol·L⁻¹·s⁻¹. What is the initial rate of formation of $O_2(g)$ in mol·L⁻¹·s⁻¹?

- (A) 0.0018
- **(B)** 0.0036
- (C) 0.0054
- **(D)** 0.0072
- **AB** has an enthalpy of reaction of **28.** The reaction A + B-85.0 kJ·mol⁻¹. If the activation enthalpy for the forward reaction is 120.0 kJ·mol⁻¹, what is the activation energy for the reverse reaction AB A + B?
 - (A) 35.0 kJ·mol⁻¹
- **(B)** 85.0 kJ⋅mol⁻¹
- (C) 120.0 kJ·mol⁻¹
- **(D)** 205.0 kJ⋅mol⁻¹
- 29. Use the experimental data in this table to determine the rate law for the reaction of hydrogen iodide, HI, with ethyl iodide, C₂H₅I, to form ethane, C₂H₆, and iodine, I₂.

[HI], M	$[C_2H_5I], M$	$\frac{[I_2]}{t}$, mol·L ⁻¹ ·s ⁻¹
0.010	0.010	1.2×10^{-5}
0.010	0.020	2.4×10^{-5}
0.020	0.020	4.8×10^{-5}

- (A) rate = k [HI]
- **(B)** rate = $k [C_2H_5I]$
- (C) rate = k [HI] [C₂H₅I]
- **(D)** rate = $k [HI]^2 [C_2H_5I]^2$
- **30.** Which equation indicates the presence of a catalyst in the reaction?

- (A) A + BD + B
- (B) A + BC + D
- (C) A + AD
- (D) A $\mathbf{B} + \mathbf{C}$
- **31.** The reaction **A** $\mathbf{B} + \mathbf{C}$ obeys the rate law: rate = $k[\mathbf{A}]$. Which graph will produce a straight line?
 - (A) [A] vs time
- (B) ln[A] vs time
- (C) 1/[A] vs time
- **(D)** [A] vs 1/time

Ouestions 32 and 33 should both be answered with reference to this system.

$$H_2(g) + I_2(s) \rightleftharpoons 2HI(g)$$
 $H = +51.8 \text{ kJ}$

32. Which would increase the equilibrium quantity of HI(g)? Assume the system has reached equilibrium with all three components present.

I. increasing pressure

- **II.** increasing temperature
- (A) I only
- (B) II only
- (C) Both I and II
- (D) Neither I nor II
- 33. What is the equilibrium constant expression for this system?
 - $(\mathbf{A}) \quad K = \frac{[\mathbf{H}\mathbf{I}]^2}{[\mathbf{H}_2][\mathbf{I}_2]}$
- **(B)** $K = \frac{\left[H_2\right]\left[I_2\right]}{\left[HI\right]^2}$
- (C) $K = \frac{2[HI]}{[H_2][I_2]}$ (D) $K = \frac{[HI]^2}{[H_1]}$
- **34.** The ionization of benzoic acid is represented by this equation.

$$C_6H_5COOH(aq) \rightleftharpoons H^+(aq) + C_6H_5COO^-(aq)$$

If a 0.045 M solution of benzoic acid has an $[H^+]$ = 1.7×10^{-3} , what is the K_a of benzoic acid?

- **(A)** 7.7×10^{-5}
- **(B)** 6.4×10^{-5}
- (C) 3.8×10^{-2}
- **(D)** 8.4×10^{-1}
- 35. $C_6H_5OH(aq) + CN^-(aq) \rightleftharpoons HCN(aq) + C_6H_5O^-(aq)$

The equilibrium constant for this reaction is less than 1. What is the strongest base in this system?

- (A) $C_6H_5OH(aq)$
- **(B)** $CN^{-}(aq)$
- (C) HCN(aq)
- **(D)** $C_6H_5O^-(aq)$

The ionization of hypochlorous acid represented above has $K = 3.0 \times 10^{-8}$ at 25°C. What is K for this reaction?

$$OCl^{-}(aq) + H_2O(l) \rightleftharpoons HOCl(aq) + OH^{-}(aq)$$

- **(A)** 3.3×10^{-7}
- **(B)** 3.0×10^{-8}
- (C) 3.0×10^6
- **(D)** 3.3×10^7
- **37.** Lead(II) fluoride (PbF₂), lead(II) chloride (PbCl₂), lead(II) bromide (PbBr₂), and lead(II) iodide (PbI₂) are all slightly soluble in water. Which lead salt will increase in solubility when its saturated solution is acidified?
 - (**A**) PbF₂
- (B) PbCl₂
- (C) $PbBr_2$
- **(D)** PbI₂
- **38.** In which process does the nitrogen undergo oxidation?
 - (A) N_2 $2NH_3$
- (B) N_2O_4 $2NO_2$
- (C) $2NO_3^ N_2O_5$
- **(D)** $NO_2^ NO_3^-$
- **39.** Which statement is *not* true about the electrolysis of a 1 M solution of KI to which phenolphthalein has been added?
 - (A) Potassium metal is formed.
 - **(B)** A yellow color appears at the anode.
 - (C) A pink color appears at the cathode.
 - **(D)** A gas is produced at the cathode.

Ouestions 40 and 41 should be answered with reference to these half-reactions and their standard reduction potentials.

$$Al^{3+}(aq) + 3e^{-}$$

$$E^{o} = -1.66 \text{ V}$$

$$Mn^{2+}(aq) + 2e^{-}$$

$$E^{o} = -1.18 \text{ V}$$

- **40.** What process occurs at the anode of a voltaic cell utilizing these two half-reactions?
 - (A) Al(s) $Al^{3+}(aq) + 3e^{-}$
 - **(B)** $Al^{3+}(aq) + 3e^{-}$ Al(s)
 - $Mn^{2+}(aq) + 2e^{-}$ (C) Mn(s)
 - **(D)** $Mn^{2+}(aq) + 2e^{-}$ Mn(s)
- 41. What is the standard potential of a voltaic cell produced by using these two half-reactions?
 - (A) 0.04 V
- **(B)** 0.48 V
- (C) 2.84 V
- **(D)** 6.68 V

- $Ni(s) + Cu^{2+}(aq)$ $Ni^{2+}(aq) + Cu(s)$ 42. The voltaic cell based on this reaction has a voltage of 0.59 V under standard conditions. Which of these changes will produce a higher voltage?
 - I. increasing [Cu²⁺]
 - **II.** increasing the size of the Ni(s) electrode
 - (A) I only
- (B) II only
- (C) Both I and II
- (D) Neither I nor II
- **43.** When a phosphorus atom is converted to a phosphide ion, what happens to the number of unpaired electrons and the total number of electrons around the phosphorus?

_	unpaired electrons	total electrons
(A)	increases	increases
(B)	decreases	increases
(C)	increases	remains the same
(D)	decreases	remains the same

- **44.** Which list includes species with the same number of electrons?
 - (A) Mg, Ca, Sr
- **(B)** Li⁺, Na⁺, K⁺
- (C) K^+ , Cl^- , S^{2-}
- **(D)** Fe^{2+} , Co^{2+} , Ni^{2+}
- **45.** Which pair of symbols represents nuclei with the same number of neutrons?
 - (A) ⁵⁶Co and ⁵⁸Co
- **(B)** 57 Mn and 57 Fe
- (**C**) ⁵⁷Fe and ⁵⁸Ni
- **(D)** 57Co and 58Ni
- **46.** Which list includes elements in order of *increasing* metallic character?
 - (A) Si, P, S
- (**B**) As, P, N
- (C) Al, Ge, Sb
- (D) Br. Se. As
- **47.** How many unpaired electrons are in an iron atom in its ground state?
 - **(A)** 6
- **(B)** 4
- **(C)** 2
- **(D)** 0
- **48.** How do the energy gaps between successive electron energy levels in an atom vary from low to high *n* values?
 - (A) All energy gaps are the same.
 - **(B)** The energy gap decreases as *n* increases.
 - (C) The energy gap increases as *n* increases.
 - **(D)** The energy gap changes unpredictably as nincreases.

49.	Which bond is expected to b	e the	<i>least</i> pola	r?	55.	Whi	ich of these	e compounds	contai	ns a carbo	xyl gro	up?
	(A) O–F	(B)	P-F			(A)	propanol		(B)	propana	l	
	(C) Si–N	(D)	B-Cl			(C)	propanon	e	(D)	propano	ic acid	
50.	For which element would X		_		56.		ich class of rated hydr	f compounds ocarbons?	consis	ts exclusiv	vely of	
	(A) C (B) Cl	(C)	Р	(D) S			alkanes		(B)	alkenes		
51.	Which species has a Lewis of like that of the carbonate ion			acture most		(C)	alkynes		(D)	aromatic	es	
	(A) NO ₃ ⁻ (C) SO ₃ ²⁻		CH ₃ ⁺ PO ₄ ³⁻		57.			ferent alcohol the molecular				l
	(C) 50 ₃	(D)	104			(A)	2	(B) 3	(C)	4	(D)	5
52.	Which compounds contain both ionic and covalent bonds?I. BaSO₄ II. Ca(NO₃)₂ III. NH₄Cl		ovalent I. NH ₄ Cl	58.	What is the position of the bromine atom relative to the methyl group in 3-bromotoluene?						o the	
	(A) I only		I and III			(A)	meta		(B)	ortho		
	(C) II and III only		I, II and	•		(C)	para		(D)	trans		
53.	When the species NH_4^+ , H_3O^+ , and H_2F^+ are arranged in					Which of these compounds have cis- and trans- isomers?						
	order of increasing H– X –H correct order?	bond a	angles, wh	at is the		(A) dichlorobenzene		(B)	1-chloropropene		e	
	(A) $H_3O^+ < NH_4^+ < H_2F^+$	(B)	$H_2F^+ < 1$	$H_3O^+ < NH_4^+$		(C)	1,2-dichle	oropropane	(D)	dichloro	ethyne	
	(C) $NH_4^+ < H_2F^+ < H_3O^+$	(D)	$NH_4^+ < I$	$H_3O^+ < H_2F^+$	60.			lymer has the $^{1}_{2}CCl_{2}$ –) _n , fron			er is it	made?
54.	The nitrite ion, NO ₂ , may be					(A)	HC=CC	1	(B)	ClHC=C	CCIH	
	resonance forms. The length bonds in this ion are expected			n-to-oxygen		(C)	Cl ₂ C=CH	2	(D)	$H_2C=CC$	ClH	
	(A) the same as the length bonds.	the length of nitrogen-to-oxygen double										
	(B) the same as the length bonds.	of nitr	ogen-to-o	xygen triple								
	(C) between the lengths of bond and a nitrogen-to											
	(D) between the lengths of bond and a nitrogen-to											
				END O	F TES	ST						

U.S. NATIONAL CHEMISTRY OLYMPIAD 2001 LOCAL SECTION EXAM — KEY

Number Answer	Number Answer	Number Answer
1. D	21. D	41. B
2. B	22. C	42. A
3. B	23. B	43. B
4. A	24. C	44. C
5. B	25. D	45. D
6. C	26. B	46. D
7. A	27. A	47. B
8. A	28. D	48. B
9. C	29. C	49. A
10. A	30. A	50. C
11. D	31. B	51. A
12. D	32. B	52. D
13. B	33. D	53. B
14. D	34. B	54. C
15. C	35. D	55. D
16. B	36. A	56. A
17. A	37. A	57. C
18. D	38. D	58. A
19. C	39. A	59. B
20. C	40. A	60. C

Page 8	3
--------	---