MJath
 Hower

January 17, 2020
© 301-520-6030
Fax: 301-251-8645

For class info, visit www.MathEnglish.com
Direct your questions and comments to DrLi@Smart4Micro.com

Name: (First) \qquad (Last) \qquad
School: \qquad Grade: \qquad
\square
ANGLE BISECTORS 2
PARALLEL LINES AND ANGLES 6
ASSESSMENT TEST 9
ASSESSMENT TEST 13

Honors Geometry

Sample

Angle Bisectors

Definition: angle bisector
Angle bisector divides an angle equally.
The ray OB divides the angle $\angle \mathrm{AOB}$ evenly into two congruent angles: $\angle 1$ and $\angle 2$, so OB is called the angle bisector of $\angle \mathrm{AOB}$.

OB bisects an angle

Question set $[1-4]$

Find the value of x in each of the following.

1. What is the measure of x in the figure?

2. $\angle \mathrm{AOD}$ is a straight angle $\left(180^{\circ}\right), \mathrm{OB}$ and OC divide the entire angle into three congruent angles, what should be the value for x ?

3. What should be the value for x in the figure?

4. Find the value of x.

Question set [5-10]

Conceptual and computational problems.
5. $\angle 1$ and $\angle 2$ are called \qquad
\qquad .

6. Two angles are \qquad if they add up to be 90°.
10. Is it true that a straight angle is twice a right angle?
7. Two angles are \qquad if they add up to be 180°.
8. What angles are supplementary to $\angle 1$?

Question set [11-12]
$\angle \mathrm{AOB}$ and $\angle \mathrm{BOC}$ are linear pair. DO bisects $\angle \mathrm{AOB}$ and EO bisects $\angle \mathrm{BOC}$.

11. Given that $\angle \mathrm{AOB}=40^{\circ}$, what is the measure of $\angle 2$?
12. Prove that $\angle 1+\angle 2=90^{\circ}$ regardless of the measure of $\angle \mathrm{AOB}$.
9. If BD bisects $\angle \mathrm{ABC}$, what is the measure of $\angle \mathrm{ABD}$?

Question set [13-17]

Computational problems.
13. BD bisects $\angle \mathrm{ABC}$. If $\angle \mathrm{ABD}=30^{\circ}$, find the value for x.

14. $\angle \mathrm{ABC}$ is bisected by BD in the figure. If $\angle A B E=100^{\circ}$, find the value for x.

15. As in the following figure, is it true that x $=y$?

Name of an angle:

16. $\angle \mathrm{COE}$ is bisected by OD and $\angle \mathrm{AOC}$ is bisected by OB. Find the value for x.

17. P is a point on AE. BP bisects $\angle \mathrm{APC}$. DP bisects $\angle \mathrm{CPE}$. Find the measure of $\angle \mathrm{DPB}$.

An angle is formed by one vertex and two sides connected by the vertex. As in the figure, the angle can be expressed as $\angle \mathrm{AOB}$ or $\angle 1$ in short.

Definition: congruent angle

Honors Geometry

Sample

Congruent angles are equal in measure.

When two angles $\angle 1$ and $\angle 2$ are measured to be the same, we called them congruent angles, or we say $\angle 1$ is congruent to $\angle 2$.

Parallel Lines and Angles

Definition: corresponding angles
Two lines L_{1} and L_{2} (not necessarily parallel) are cut by a transversal. Get familiar with the following terms.

There are four such pairs: $(\angle 1, \angle 5),(\angle 3, \angle 7)$, ($\angle 2, \angle 6$), $(\angle 4, \angle 8)$.

THEOREM A

[Corresponding Angles Postulate]

If L_{1} and L_{2} are parallel and cut by a transversal then corresponding angles are congruent.

Consecutive interior angles:

There are two such pairs: $(\angle 3, \angle 5),(\angle 4, \angle 6)$.
Alternate interior angles:

There are two such pairs: $(\angle 3, \angle 6)$ and $(\angle 4$, $\angle 5)$.

Alternate exterior angles:

There are two such pairs: $(\angle 2, \angle 7)$ and $(\angle 1$, $\angle 8)$.

Consecutive exterior angles:

There are two such pairs: $(\angle 1, \angle 7)$ and $(\angle 2$, $\angle 8)$.

Consecutive and alternate angles

The term consecutive pair refers to both angles falling on the same side of the transversal.

The term alternate pair refers to either of the angle falling at the opposite side of the transversal.

Interior and exterior angles
The term interior pair refers to both angles

Honors Geometry
falling in the interior strip formed by L_{1} and L.

The term exterior pair refers to both angles falling in the exterior strip formed by L_{1} and L2.

18. In each of the following problems use the information to name the segments that must be parallel. If there is no such segment, write none.

Given	Parallel segments	Reason
a) $\angle 2=\angle 8$	$\mathrm{AB} / / \mathrm{EG}$	corr. angles
b) $\angle 1+\angle 2=\angle 7+\angle 8$		
c) $\angle 3+\angle 13=180^{\circ}$		
d) $\angle 8=\angle 15$		
e) $\angle 3=\angle 14$		
f) $\angle 3+\angle 10+\angle 11=180^{\circ}$		
g) $\angle 1+\angle 11=180^{\circ}$		
h) $\angle 2=\angle 11$		

Sample

19. In the figure, $\mathrm{L}_{1} / / \mathrm{L}_{2}$. DA is the angle bisector of $\angle \mathrm{BAC} . \angle 1=100^{\circ}$. Find the measure of the remaining angles (from 2 to 11).

20. Find the values of x and y.

Question set [21-26]
Given that $\mathrm{L}_{1} / / \mathrm{L}_{2}$.
21. Find the values of x and y.

22. Find the value of x.

25. Find the value of x.

23. Find the value of x.

24. Find the value of x.

Sample

Assessment Test
27. If the figure below is a regular decagon with a center at Q , what is the measure of the indicated angle?

(A) 45°
(B) 80°
(C) 90°
(D) 108°
28. $\Delta \mathrm{RST}$ and $\Delta \mathrm{MNO}$ are similar. What is the length of line segment MO?

(A) 12 cm
(B) 15 cm
(C) 20 cm
(D) 32 cm
29. In the diagram, three lines intersect at point O. Which of the following are NOT adjacent angles?

(A) $\angle 1$ and $\angle 6$
(B) $\angle 1$ and $\angle 4$
(C) $\angle 4$ and $\angle 5$
(D) $\angle 2$ and $\angle 3$
30. Find the perimeter of the shape below.

31. A triangle has sides that are consecutive even integers. The perimeter of the triangle is 24 inches. What is the length of the shortest side?
(A) 10 inches
(B) 8 inches
(C) 6 inches
(D) 4 inches

Sample

32. If the area of a circle is 16π square inches, what is the perimeter?
(A) 2π inches
(B) 4π inches
(C) 8π inches
(D) 16π inches
33. What is the length of one side of a square rug whose perimeter is 60 feet?
(A) 14.5 feet
(B) 15 feet
(C) 15.5 feet
(D) 16 feet
34. What is the perimeter of a pentagon with three sides of 3 inches, and the remaining sides 5 inches long?
(A) 19 inches
(B) 9 inches
(C) 14 inches
(D) 12 inches
35. Grow three squares along the sides of $\triangle A B C$ as the figure below. If the perimeter of the $\triangle \mathrm{ABC}$ is 12 , what is the perimeter 9 -sided polygon?

36. If the two triangles in the diagram are similar, with $\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}$, what is the perimeter of $\triangle \mathrm{DEF}$

37. What is the area of the shaded triangle below?

(A) 20 square units
(B) 25 square units
(C) 44 square units
(D) 46 square units
38. Which equation is represented by the parabola below?

(A) $y=\frac{1}{4} x^{2}+\frac{1}{4} x+3$
(B) $y=-\frac{1}{4} x^{2}+\frac{1}{4} x+3$
(C) $y=\frac{1}{4} x^{2}-\frac{1}{4} x-3$
(D) $y=-\frac{1}{4} x^{2}-\frac{1}{4} x+3$

Honors Geometry

Sample

39. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ in the following figure. The lengths of four sides are represented by a, b, c, and d.

Figure not drawn to scale
Which of the following has the greatest value?
(A) a
(B) b
(C) c
(D) d
40. In the diagram below, what is the measure of $\angle 3$?

(A) 30°
(B) 60°
(C) 120°
(D) 140°
41. What is the value of a in the following diagram?

(A) 70°
(B) 60°
(C) 50°
(D) 40°
42. What is the measure of $\angle \mathrm{ABC}$ if ABCD is a parallelogram, and the measure of $\angle \mathrm{BAD}$ is 88° ?

(A) 88°
(B) 90°
(C) 92°
(D) 102°
43. One base angle of an isosceles triangle is 70°. What is the vertex angle?
(A) 130°
(B) 90°
(C) 70°
(D) 40°
44. A circular fan is encased in a square guard. If one side of the guard is 12 inches, at what blade circumference will the fan just hit the guard?
(A) 6 inches
(B) 12 inches
(C) 6π inches
(D) 12π inches
45. If the circumference of a circle is half the area, what is the radius of the circle?
(A) 3
(B) 2
(C) 4
(D) 8

Honors Geometry

Sample

46. What is the circumference of a circle with a diameter of 5 inches?
(A) 2.5π inches
(B) 5π inches
(C) 6.25π inches
(D) 25π inches

Honors Geometry

Assessment Test

47. What is the area of the following diagram?

(A) 141
(B) 151
(C) 161
(D) 181
48. What is the volume of a pyramid with a rectangular base 5 feet by 3 feet and a height of 8 feet?
Hint: $\mathrm{V}=\frac{1}{3}($ base area $) \times$ (height).
(A) 16 cubic feet
(B) 30 cubic feet
(C) 40 cubic feet
(D) 80 cubic feet
49. Georgio is making a box. He starts with a 10-by-7 rectangle, then cuts 2-by-2 squares out of each corner. To finish, he folds each side up to make the box. What is the box's volume?

(A) 36
(B) 70
(C) 72
(D) 140

Sample

50. In order to protect her new VW Bug, Maria needs to build a new garage. The concrete door needs to be 62.1 square feet and is 9.2 feet long. How wide does it need to be?
(A) 7.25 feet
(B) 5.5 feet
(C) 6.75 feet
(D) 8.25 feet
51. All of the rooms on the top floor of a government building are rectangular, with 8 -foot ceilings. One room is 9 feet wide by 11 feet long. What is the combined area of the four walls, including doors and windows?
(A) 99 square feet
(B) 160 square feet
(C) 320 square feet
(D) 72 square feet
52. A rectangular tumbling mat for a gym class is 5 feet wide and 7 feet long. What is the area of the mat?
(A) 12 square feet
(B) 22 square feet
(C) 24 square feet
(D) 35 square feet
53. A farmer is building a rectangular pen on the side of his barn, which is 100 feet long. He has 500 feet of fence and is using the side of the barn as the fourth side of the fence. What will be the area of the pen?
(A) 10,000 square feet
(B) 20,000 square feet
(C) 30,000 square feet
(D) 50,000 square feet

Honors Geometry
54. Louise wants to wallpaper a room. It has one window that measures 3 feet by 4 feet, and one door that measures 3 feet by 7 feet. The room is 12 feet by 12 feet, and is 10 feet tall. If only the walls are to be covered, and rolls of wallpaper are 100 square feet, what is the minimum number of rolls that she will need?
(A) 4 rolls
(B) 5 rolls
(C) 6 rolls
(D) 7 rolls
55. The perimeter of the following triangle is 30 cm . What is the area of the triangle?

(A) 15
(B) 20
(C) 30
(D) 32
56. ABCD is a square. The length of EC is 10 . What is the length of $A C$?

Sample

57. A hospital waiting room is 8 feet wide and 10 feet long. What is the area of the waiting room?
(A) 18 square feet
(B) 40 square feet
(C) 60 square feet
(D) 80 square feet
58. The length of a rectangle is equal to 4 inches more than twice the width. Three times the length plus two times the width is equal to 28 inches. What is the area of the rectangle?
(A) 8 square inches
(B) 16 square inches
(C) 24 square inches
(D) 28 square inches
59. A rectangular box has a square base with an area of 9 square feet. If the volume of the box is 36 cubic feet, what is the length of the longest object that can fit in the box?
(A) 3 feet
(B) 5 feet
(C) 5.8 feet
(D) 17 feet
60. Dennis Sorensen is buying land on which he plans to build a cabin. He wants 200 feet in road frontage and a lot 500 feet deep. If the asking price is $\$ 9,000$ an acre for the land, how much will Dennis pay for his lot? (1 acre $=43,560 \mathrm{sq}$. ft.)
(A) $\$ 10,000$
(B) $\$ 20,661$
(C) $\$ 22,956$
(D) $\$ 24,104$

Honors Geometry
61. In the following diagram, a circle of area 100π square inches is inscribed in a square. What is the length of each side?

(A) 10 inches
(B) 20 inches
(C) 100 inches
(D) 400 inches
62. Gilda is making a quilt. She wants a quilt that is 30 square feet. She has collected fabric squares that are 6 inches by 6 inches. How many squares will she need?
(A) 60 squares
(B) 90 squares
(C) 100 squares
(D) 120 squares
63. ABCD is a square. What is the area of the trapezoid ABCE?

(A) 76
(B) 94
(C) 114
(D) 152
64. What is the area of the shaded figure inside the rectangle?

(A) 48
(B) 54
(C) 60
(D) 72
65. Ahmed has a canvas frame that is 25 inches long and 18 inches wide. He buys a canvas that is 3 inches longer on each side. What is the area of the canvas?
(A) 450 square inches
(B) 744 square inches
(C) 588 square inches
(D) 872 square inches
66. Prisoner Jones escaped a short time ago. On foot, he has not gotten far, and is believed to be within a 3-mile radius of the prison. What is the approximate area, in square miles, of the area in which the prisoner is hiding?
(A) 28 square miles
(B) 30 square miles
(C) 9 square miles
(D) 10 square miles

Znswer

Key

Angle Bisectors

1. $x=50^{\circ}$
$x+40^{\circ}=90^{\circ} \Rightarrow x=50^{\circ}$
2. $x=60^{\circ}$ since $180^{\circ} \div 3=60^{\circ}$.
3. $x=120^{\circ}$
4.

$2 x-5+3 x+5=90^{\circ}$
$5 x=90^{\circ}$
$x=18^{\circ}$
5. Linear pair
6. complementary
7. supplementary
8. $\angle 2$ and $\angle 4$ are supplementary to $\angle 1$
9. 45°
10. Yes. Straight angle has 180° and a right angle is 90°.
11. $\angle \mathrm{AOC}=180^{\circ}-40^{\circ}=140^{\circ}$
$\angle 2=\frac{1}{2} \angle A O C=\frac{1}{2}\left(140^{\circ}\right)=70^{\circ}$
12. $\angle \mathrm{AOB}+\angle \mathrm{BOC}=180^{\circ}$ (linear pair)
$\angle 1=\frac{1}{2} \angle \mathrm{AOB}$ (bisector)
$\angle 2=\frac{1}{2} \angle \mathrm{BOC}$ (bisector)
$\angle 1+\angle 2=\frac{1}{2}(\angle \mathrm{AOB}+\angle \mathrm{BOC})=90^{\circ}$
13. $x=180^{\circ}-2\left(30^{\circ}\right)=120^{\circ}$
14. $\angle \mathrm{CBA}=80^{\circ}$, therefore, $x=\frac{1}{2}(80)=40$.
15. Yes, since $x=y=140^{\circ}$.
16. $\angle \mathrm{COE}=40^{\circ} . \angle \mathrm{AOC}=140^{\circ}$. Thus, $\mathrm{x}=$ $\frac{1}{2}(140)=70$.
17. 90°

Parallel Lines and Angles

18. The answer is listed in the following table.

Given	Parallel segments	Reason
a) $\angle 2=\angle 8$	$\mathrm{AB} / / \mathrm{EG}$	corr. angles
b) $\angle 1+\angle 2=\angle 7+\angle 8$	$\mathrm{BF} / \mathrm{CD}$	corr. angles.
c) $\angle 3+\angle 13=180^{\circ}$	$\mathrm{AE} / / \mathrm{BG}$	consec. int.
d) $\angle 8=\angle 15$	None	
e) $\angle 3=\angle 14$	$\mathrm{AE} / / \mathrm{BG}$	corr. angles
f) $\angle 3+\angle 10+\angle 11=180^{\circ}$	$\mathrm{BF} / / \mathrm{CD}$	consec. int.
g) $\angle 1+\angle 11=180^{\circ}$	None	
h) $\angle 2=\angle 11$	$\mathrm{AB} / / \mathrm{EG}$	alt. int. angles

19. $\angle 1=\angle 3=100^{\circ}$
$\angle 2=\angle 4=80^{\circ}$
$\angle 2=\angle 5=80^{\circ}$
$\angle 6=\angle 7=50^{\circ}$
$\angle 9=\angle 11=50^{\circ}(=\angle 7)$
$\angle 8=\angle 10=130^{\circ}$
20. $y=68$ (corr. angles postulate)
$x=112^{\circ}$ (linear pair)
21. $x=58^{\circ}$ (corresponding angle) and $y=$ 70°.
22. 55°
$x+35=90^{\circ}$. Thus, $x=55^{\circ}$.
23. 100°
$a=60$ (alt. int. angle)
$b=40$ (alt. int. angle)
$x=a+b=100$

24. 15°
$3 x+10=2 x+25$ (corresponding angle) $x=15$

Sample

25. 29°
$3 x+10+2 x+25=180^{\circ}$ (consec. int. angle)
$5 x=145$
$x=29$
26. $x=40, y=22.5$
$x+30+3 x-10=180^{\circ}$ (linear pair)
$4 x+20=180^{\circ}$
$4 x=160^{\circ}$
$x=40^{\circ}$
$x+30^{\circ}=2 y+25^{\circ}$ (corr. angles
postulate)
$70^{\circ}=2 y+25^{\circ}$
$2 y=45^{\circ}$
$y=22.5^{\circ}$

Assessment Test

27. D
28. A
29. B
30. $8+4+4 \pi+2 \pi=12+6 \pi$
31. C
32. C
33. B
34. A
35. 36
36. 15.4

The perimeter of $\triangle \mathrm{ABC}$ is $3+3+5=11$.
Since $D E=7=1.4 \times A B$, the perimeter of $\Delta \mathrm{DEF}=1.4 \times 11=15.4$
37. A

The height is 8 and the base is 5 , the area is $\frac{1}{2}(5 \times 8)=20$

38. B
$y=-\frac{1}{4}(x+3)(x-4)=-\frac{1}{4} x^{2}+\frac{1}{4} x+3$
39. D

Note that we have
$b>a, d>c$, and $d=1.5 b$
Therefore, d is the largest one.

40. C
41. C

$$
a+100=150 \Rightarrow a=50
$$

42. C
43. D
44. D
45. C
46. B

Assessment Test

47. B

$$
13 \times 11+2 \times 4=151
$$

48. C

$$
\frac{1}{3} \times(3 \times 5) \times 8=40
$$

49. A

The height of the box is 2 , the length of the base is $10-2 \times 2=6$, the width is $7-$ $2 \times 2=3$, the base area is $3 \times 6=18$. The volume is
$2 \times 3 \times 6=36$
50. C

Sample

51. C
52. D
53. B

$$
\frac{1}{2}(500-100)=200
$$

$200 \times 100=20,000$

54. B
55. C

Let x be the base, the hypotenuse will be $30-5-x=25-x$. Using Pythagorean theorem.
$x^{2}+5^{2}=(25-x)^{2}$
$x^{2}+25=625-50 x+x^{2}$
$50 x=600$
$x=12$
The area is $\frac{1}{2} \times 12 \times 5=30$
56. $8 \sqrt{2}$
$\mathrm{DC}=8, \mathrm{AC}=8 \sqrt{2}$
57. D
58. B

Let $x=$ the width and $2 x+4=$ the length. We have

$$
\begin{aligned}
& 3 \text { (length) }+2 \text { (width) }=28 \\
& 3(2 x+4)+2 x=28 \\
& 8 x+12=28 \\
& 8 x=16 \\
& x=2
\end{aligned}
$$

The area $=2 \times 8=16$ in 2.
59. C
60. B
$200 \times 500=100,000$
$100,000 \div 43,560 \times 9,000=20,661$
61. B
$100 \pi=10^{2} \pi$, the radius is 10 , each of the square is 20 .
62. D
63. C
$\mathrm{DE}=5, \mathrm{AE}=7, \mathrm{BC}=12$, the area of the trapezoid $=\frac{1}{2}(7+12) \times 12=114$.
64. A

The area of the rectangle is $11 \times 6=66$.
Each of the four corner triangles has an area of $\frac{1}{2} \times 3 \times 3=4.5$. The shaded area $=$ $66-4 \times 4.5=48$.
65. B
66. A

