Honors Pre Cal Sample

December 12, 2023
E: 301-520-6030
Fax: 301-251-8645

Honors Pro Cal

Perpendicular and Parallel Lines (1)
Question set [1-2]
For each pair of linear equations, determine if they are parallel, perpendicular, or neither.

1. $x-3 y=4$
$-2 x+6 y=0$
2. $\quad \begin{aligned} y & =0 \\ x & =3\end{aligned}$

$$
\begin{aligned}
& y=3 x \\
& y=\frac{1}{3} x
\end{aligned}
$$

$y=\frac{1}{3} x$
5. $y=3 x$
2. $2 x+3 y=0$ $3 x-2 y=1$

3. $y=3 x+4$
$2 y=6 x+9$
7. What is the slope of (the line segment) AB ?
4. $y=2 x+3$
$y=-2 x+3$
8. What is the slope of BC ?

Honors Pre Cal Sample

9. What the X-coordinate (the value of x) of C?

As the diagram below, ABPQ is a rectangle.
The coordinates of P and Q are given.

13. What is the slope of PQ ?
10. What is the slope of CD ?

12. Compute the slope of AD using the result from the previous problem.
16. What is the area of $\triangle \mathrm{APQ}$?

Question set [13-18]

Honors Pre Cal

17. Find the slope of AB .

Sample

21. How can you verify if $A B C D$ is a rhombus?
22. What is the slope of BP?
23. ABCD is rectangle. How do you verify it?

24. What are the relative coordinates of A to B?
25. slope $=\frac{1}{2}$, containing the point $(-2,3)$
26. Use the concept of relative coordinates, find the coordinates for D .

25 . containing the points $(-3,-2)$ and $(4,-6)$

Honors Pre Cal
 Sample

26. containing two points: $(1,2)$, and $(3,4)$.
27. containing two points: $(3,0)$, and $(0,4)$.

28. parallel to $y+3 x-4=0$ and with the y intercept $=6$.
29. parallel to y-axis and passes through $(3,4)$.

Honors Pre Cal

Special Triangles

THEOREM A

$\triangle \mathrm{ABC}$ is a special triangle: $30^{\circ}-60^{\circ}-90^{\circ}$. Then $\mathrm{BC}: \mathrm{AC}: \mathrm{AB}=1: \sqrt{3}: 2$.

Sample

33. $\triangle A B C$ is a right triangle with $A B=6$. Find the lengths of AC and AD . (Hint: $\triangle \mathrm{ACD}$ is a right isosceles.)

34. Prove the previous theorem.

35. $\triangle \mathrm{ABC}$ is a right triangle with $\angle \mathrm{A}=60^{\circ}$. Find the value of x, y, z, and h.

Honors Pre Cal
 Sample

40. Find the height of the following trapezoid.

41. The figure shows a cube. Find the lengths of AF and AG.

42. $\triangle \mathrm{ABC}$ is a right triangle with $\angle \mathrm{C}=30^{\circ}$. BD is a segment in $\triangle \mathrm{ABC}$ with $\angle A B D=45^{\circ}$. Find the length of $C D$.

39. $\angle \mathrm{BAC}=90^{\circ}$.

Honors Pre Cal Sample

43. $\triangle \mathrm{ABC}$ is a right triangle inscribed in a semicircle.
Find the value of x, y, z, and the area of the semicircle.

Honors Pre Cal

Radicals

Example A:

Simplify the following.
(a) $\sqrt[6]{\frac{x^{12} y^{24}}{64}}$
(b) $\sqrt[3]{\frac{(x-1)^{6}(y+5)^{8}}{216}}$

Solution:
(a) $\frac{x^{2} y^{4}}{2}$
(b) $\sqrt[3]{\frac{(x-1)^{6}(y+5)^{8}}{216}}=\frac{(x-1)^{2}(y+5)^{4}}{6}$

Example B:

Simplify: $(5 \sqrt{8}+2 \sqrt{15})(5 \sqrt{8}-2 \sqrt{15})$

> Solution:
> $(5 \sqrt{8})^{2}-(2 \sqrt{15})^{2}$
> $=25(8)-4(15)$
> $=200-60$
> $=140$
44. $\frac{\sqrt[3]{.5 x^{8} y}}{\sqrt[3]{12.5 x^{2} y^{7}}}$

45. $\frac{\sqrt[3]{5 x^{8} y}}{\sqrt[3]{625 x^{2} y^{7}}}$
49. $(\sqrt{a}+\sqrt{3 b})(\sqrt{a}-\sqrt{3 b})$
46. $9 \sqrt{50}-6 \sqrt{98}+5 \sqrt{32}$
50. $(\sqrt{8}+2 \sqrt{15})(\sqrt{8}-2 \sqrt{15})$

Honors Pre Cal Sample

51. $(\sqrt[6]{8}+\sqrt[6]{27})(\sqrt[6]{8}-\sqrt[6]{27})$
52. $(\sqrt[3]{2}+\sqrt[3]{5})(\sqrt[3]{4}-\sqrt[3]{10}+\sqrt[3]{25})$
(Hint: Use $\left.(A+B)\left(A^{2}-A B+B^{2}\right)=A^{3}+B^{3}\right)$

53. $(\sqrt{5}+3)^{2}$
54. $(3 \sqrt{5}-7)^{2}$

Honors Pre Cal
 Sample

Math Challenge
57. Let A, M, and C be non-negative integers such that $\mathrm{A}+\mathrm{M}+\mathrm{C}=12$. What is the maximum value of $\mathrm{AMC}+\mathrm{AM}+\mathrm{MC}+$ CA?

Honors Pre Cal Sample

Negative Exponents
61. $\left(-2 a^{3}\right)\left(5 a b^{2}\right) /\left(-3 a^{4} b\right)=$

Example C:

Simplify each of the following.
(a) $t^{2} \cdot 3 t^{4} /\left(4 t^{3}\right)=$
(b) $\frac{-4 p^{4} \cdot 3 p^{6}}{3 p^{3} \cdot 4 p^{5}}=$

Solution:
(a) $t^{2} \cdot 3 t^{4} /\left(4 t^{3}\right)=\frac{t^{2} \cdot 3 t^{4}}{4 t^{3}}=\frac{3 t^{6}}{4 t^{3}}=\frac{3 t^{3}}{4}$
(b) $\frac{-4 p^{4} \cdot 3 p^{6}}{3 p^{3} \cdot 4 p^{5}}=\frac{-p^{10}}{p^{8}}=-p^{2}$
62. $\left(\frac{-3 x^{3}}{y^{4}}\right)^{2}\left(\frac{x^{7}}{6 y^{5}}\right)^{3}=$

Honors Pre Cal Sample

66. $(5 a x)\left(3 a x^{3}\right) /\left(2 a^{2} x^{5}\right)=$
67. $\frac{\left(s^{3}\right)^{8}}{\left(s^{2}\right)^{5}}=$

Answer

Key

Perpendicular and Parallel Lines (1)

1. Since $1:-3=-2: 6$, they are parallel.
2. Since the slope of the first line is $-\frac{2}{3}$ and the second one has slope $=\frac{3}{2}$, thus they are perpendicular.
3. Both have the same slope 3 , so they are parallel.
4. They are neither parallel nor perpendicular.
5. They are neither parallel nor perpendicular.
6. They are perpendicular since the first one is horizontal and the second one is vertical.
7.

8. The slope of BC is $\frac{1}{2}$ according to the theorem.
9. $\frac{1}{2}=\operatorname{slope}(\mathrm{BC})=\frac{0-4}{x-5} \Rightarrow \mathrm{x}-5=-8 \Rightarrow \mathrm{x}=-3$.
10. $C D$ is parallel to $A B$, thus its slope is equal to that of AB , which is -2 .
11. $-2={ }_{\operatorname{slope}(C D)}=\frac{y-0}{-1-(-3)} \Rightarrow y=-4$.
12. $\operatorname{slope}(\mathrm{AD})=\frac{\Delta y}{\Delta x}=\frac{-4}{-1-7}=\frac{1}{2}$
13. The slope of $\mathrm{PQ}=\frac{-9}{12}=\frac{-3}{4}$
14. $A Q$ is orthogonal to $P Q$, its slope should be $\frac{4}{3}$.
15. Since the slope of $A Q$ is $\frac{4}{3}, O Q / A O=4 / 3$ $\Rightarrow 9 / \mathrm{AO}=4 / 3 \Rightarrow \mathrm{AO}=27 / 4$.
16. $\frac{1}{2}($ base $) \times($ height $)=\frac{1}{2}(12+27 / 4) \times 9=$ $\frac{1}{8}(75 \times 9)=84 \frac{3}{8}$
17. Since AB is parallel to PQ , its slope should be $-\frac{3}{4}$,
18. $\mathrm{BP} / / \mathrm{AQ}$, so the slope is the same: $\frac{4}{3}$.
19. $\mathrm{A}-\mathrm{B}=(-3,-2)-(5,-4)=(-8,2)$
20. $\mathrm{D}=(3,4)+$ relative coordinates of A to

B $=(3,4)+(-8,2)=(-5,6)$
21. $\mathrm{AB}=2 \sqrt{17}=\mathrm{BC}$
22. slope $(A B) \times$ slope $(B C)=-1$, which means $A B \perp B C$.

30. $x=3$

Special Triangles

31. Draw an auxiliary line CM so that $\angle \mathrm{BCM}$ $=60^{\circ} . \Delta \mathrm{BCM}$ is an equilateral and $\triangle \mathrm{MAC}$ is an isosceles with $\mathrm{AM}=\mathrm{CM}$. (Why?)
Thus, $\mathrm{BM}=\mathrm{MA}=1$, and $\mathrm{AB}=2$. Using
Pythagorean theorem $A C=\sqrt{3}$

32. $x=2 \sqrt{3}, y=1, h=\sqrt{3}, z=3$
33. $\mathrm{BC}=6, \mathrm{AC}=6 \sqrt{2}, \mathrm{AD}=12$
34. $x=4$
$y=\frac{4}{\sqrt{3}}=\frac{4 \sqrt{3}}{3}$
35. $x=2\left(\frac{8}{\sqrt{2}}\right)=8$
$y=4 \sqrt{6}$
36. $x=6 \sqrt{2}$
$y=3 \sqrt{2}$
37. $x=6+5=11$
$y=5 \sqrt{3}$
38. $x=4 \sqrt{3}$

$$
\mathrm{AD}=4, \mathrm{CD}=10
$$

$y=\sqrt{C D^{2}+B D^{2}}=\sqrt{148}=2 \sqrt{37}$
39. $\mathrm{BD}=3$

$$
\begin{aligned}
& 3 x=5^{2} \Rightarrow x=\frac{25}{3} \\
& y^{2}=x \cdot(\mathrm{CD})=\frac{25}{3}\left(\frac{25}{3}-3\right)=\frac{25 \cdot 16}{9} \Rightarrow y= \\
& \frac{20}{3}
\end{aligned}
$$

40. Let x be the height, then the base is $20=$ $x+10+\frac{x}{\sqrt{3}}$
$\Rightarrow x=\frac{10 \sqrt{3}}{\sqrt{3}+1}=5 \sqrt{3}(\sqrt{3}-1)=15-5 \sqrt{3}$

41. $\mathrm{AF}=\sqrt{2}, \mathrm{AG}=\sqrt{3}$
42. $\mathrm{AB}=5, \mathrm{AC}=5 \sqrt{3}, \mathrm{AD}=5 \Rightarrow \mathrm{CD}=5 \sqrt{3}-5$ $=5(\sqrt{3}-1)$
43. Since $18 x=144, x=8$. Use Pythagorean theorem, $y=6 \sqrt{13}, z=4 \sqrt{13}$. The diameter is $18+8=26$, the radius is 13 , the area of the circle is 169π.

44. $9 \sqrt{50}-6 \sqrt{98}+5 \sqrt{32}=45 \sqrt{2}-$ $42 \sqrt{2}+20 \sqrt{2}=23 \sqrt{2}$
45. $9 \sqrt[3]{24}-6 \sqrt[3]{375}+5 \sqrt[3]{81}=18 \sqrt[3]{3}-$ $30 \sqrt[3]{3}+15 \sqrt[3]{3}=3 \sqrt[3]{3}$
46. $(\sqrt{8}+\sqrt{15})(\sqrt{8}-\sqrt{15})=\sqrt{8}^{2}-\sqrt{15}^{2}=$ $8-15=-7$
47. $(\sqrt{a}+\sqrt{3 b})(\sqrt{a}-\sqrt{3 b})=a-3 b$
48. $(\sqrt{8}+2 \sqrt{15})(\sqrt{8}-2 \sqrt{15})=8-4(15)=$ -52
49. $(\sqrt[6]{8}+\sqrt[6]{27})(\sqrt[6]{8}-\sqrt[6]{27})=\left(\sqrt[6]{2^{6}}-\right.$
$\left.\sqrt[6]{3^{6}}\right)=2-3=-1$

Honors Pre Cal Sample

52. $(\sqrt[3]{2}+\sqrt[3]{5})(\sqrt[3]{4}-\sqrt[3]{10}+\sqrt[3]{25})=\sqrt[3]{2}^{3}+$ $\sqrt[3]{5^{3}}=2-5=-3$
53. $(\sqrt[3]{3}-\sqrt[3]{7})(\sqrt[3]{9}+\sqrt[3]{21}+\sqrt[3]{49})=\sqrt[3]{3}^{3}-$ Negative Exponents
54. $(-x)\left(-2 x^{2}\right)\left(-3 x^{3}\right) /\left\{\left(-4 x^{4}\right)\left(-5 x^{5}\right)\right\}=\frac{3}{-10 x^{3}}$
55. $\left(w^{2}\right)^{6} /\left(w^{3} \cdot w^{2}\right)^{4}=\frac{1}{w^{8}}$ $\sqrt[3]{7}^{3}=3-7=-4$
56. $-6 x^{3} y^{2} /\left(-4 x^{2} y^{6}\right)=\frac{3 x}{2 y^{4}}$
57. $(\sqrt{5}+3)^{2}=5+6 \sqrt{5}+9=15+6 \sqrt{5}$
58. $(3 \sqrt{5}-7)^{2}=9(5)-42 \sqrt{5}+49=94-$ $42 \sqrt{5}$
59. $\left(-2 a^{3}\right)\left(5 a b^{2}\right) /\left(-3 a^{4} b\right)=\frac{10 b}{3}$
60. $\left(\frac{-3 x^{3}}{y^{4}}\right)^{2}\left(\frac{x^{7}}{6 y^{5}}\right)^{3}=\frac{9 x^{6}}{y^{8}} \frac{x^{21}}{6^{3} y^{15}}=\frac{9 x^{27}}{216 y^{23}}$
61. $(3 \sqrt{5}-\sqrt{7})^{2}=9(5)-3 \sqrt{35}+7=52-$ $3 \sqrt{35}$
62. $\left(a^{2}\right)^{2} /\left(a^{3}\right)^{3}=\frac{1}{a^{5}}$

Math Challenge

64. $\left(-2 x^{2} y\right) /\left(4 x^{3} y^{3}\right)=-\frac{1}{2 x y^{2}}$
65. 112

When $A=M=C=4$, it reaches the maximum, so ther is $64+3 \times 16=$ 112.

