December 12, 2023 2 : 301-520-6030 Fax: 301-251-8645	For class info, visit <u>www.MathEnglish.com</u> Direct your questions and comments to <u>programs@MathEnglish.com</u>
Name: (First)(Last)	
School: Grade:	

Sample y = 3x

5.

<u>Question set</u> [1 - 2]

For each pair of linear equations, determine if they are parallel, perpendicular, or neither.

1. x - 3y = 4-2x + 6y = 0 $y = \frac{1}{3}x$

6. $\mathbf{y} = \mathbf{0}$ x = 3

3. y = 3x + 42y = 6x + 9

7. What is the slope of (the line segment) AB?

y = 2x + 34. y = -2x + 3

8. What is the slope of BC?

Sample

9. What the X-coordinate (the value of x) of C?

As the diagram below, ABPQ is a rectangle. The coordinates of P and Q are given.

13. What is the slope of PQ?

10. What is the slope of CD?

- 12. Compute the slope of AD using the result from the previous problem.
- 16. What is the area of ΔAPQ ?

Question set [13 - 18]

Sample

17. Find the slope of AB.

21. How can you verify if ABCD is a rhombus?

18. What is the slope of BP?

22. ABCD is rectangle. How do you verify it?

Question set [19 - 2/2] 30 As we know the two diagonals of a rhombus are perpendicular to each other. In the figure Determine the linear equation for each of the below, ABCD is a rhombus following. D 23. slope v Interc (3, 4) A(-3, -2) B(5, -4)

19. What are the relative coordinates of A to B?

24. slope = $\frac{1}{2}$, containing the point (-2, 3)

20. Use the concept of relative coordinates, find the coordinates for D.

25. containing the points (-3, -2) and (4, -6)

Sample

26. containing two points: (1, 2), and (3, 4).

27. containing two points: (3, 0), and (0, 4).

29. parallel to y + 3x - 4 = 0 and with the y-intercept = 6.

30. parallel to *y*-axis and passes through (3, 4).

Special Triangles

THEOREM A

 \triangle ABC is a special triangle: 30°-60°-90°. Then BC : AC : AB=1 : $\sqrt{3}$: 2.

$$2 \int_{B}^{30^{\circ}} \sqrt{3}$$

33. \triangle ABC is a right triangle with AB=6. Find the lengths of AC and AD. (Hint: \triangle ACD is a right isosceles.)

Sample

31. Prove the previous theorem.

32. \triangle ABC is a right triangle with \angle A=60°. Find the value of *x*, *y*, *z*, and *h*.

 $\angle ABD = 45^\circ$. Find the length of CD.

- 7 -Copyright © by M&E Academy

43. ΔABC is a right triangle inscribed in a semicircle.Find the value of *x*, *y*, *z*, and the area of the semicircle.

50. $(\sqrt{8} + 2\sqrt{15})(\sqrt{8} - 2\sqrt{15})$

 Honors Pre Cal
 Sample

 51. $(\sqrt[6]{8} + \sqrt[6]{27})(\sqrt[6]{8} - \sqrt[6]{27})$ 56. $(3\sqrt{5} - \sqrt{7})^2$

52.
$$(\sqrt[3]{2} + \sqrt[3]{5})(\sqrt[3]{4} - \sqrt[3]{10} + \sqrt[3]{25})$$

(Hint: Use (A+B)(A²-AB+B²)=A³+B³)

54. $(\sqrt{5} + 3)^2$

55. $(3\sqrt{5} - 7)^2$

Math Challenge

57. Let A, M, and C be non-negative integers such that A + M + C = 12. What is the maximum value of AMC + AM + MC + CA?

Negative Exponents

Sample 61. $(-2a^{3})(5ab^{2})/(-3a^{4}b) =$

Example C:

Simplify each of the following. (a) $t^2 \cdot 3t^4/(4t^3) =$

(b)
$$\frac{-4p^4 \cdot 3p^6}{3p^3 \cdot 4p^5} =$$

Solution:
(a)
$$t^2 \cdot 3t^4 / (4t^3) = \frac{t^2 \cdot 3t^4}{4t^3} = \frac{3t^6}{4t^3} = \frac{3t^3}{4}$$

(b)
$$\frac{-4p^4 \cdot 3p^6}{3p^3 \cdot 4p^5} = \frac{-p^{10}}{p^8} = -p^2$$

62.
$$\left(\frac{-3x^3}{y^4}\right)^2 \left(\frac{x^7}{6y^5}\right)^3 =$$

$$64. \ \frac{-2x^2y}{4x^3y^3} =$$

59. $\frac{(w^2)^6}{(w^3w^2)^4} =$

65.
$$\frac{5s^2t^3}{3s^4} =$$

 $60. \quad \frac{-6x^3y^2}{-4x^2y^6} =$

- 12 -Copyright © by M&E Academy

66. $(5ax)(3ax^3)/(2a^2x^5) =$

67.
$$\frac{(s^3)^8}{(s^2)^5} =$$

Answer Key

Perpendicular and Parallel Lines (1)

- 1. Since 1:-3 = -2:6, they are parallel.
- 2. Since the slope of the first line is $-\frac{2}{3}$ and the second one has slope $=\frac{3}{2}$, thus they are perpendicular.
- 3. Both have the same slope 3, so they are parallel.
- 4. They are neither parallel nor perpendicular.
- 5. They are neither parallel nor perpendicular.
- 6. They are perpendicular since the first one is horizontal and the second one is vertical.
- 7. slope(AB) = $\frac{4}{\Delta x} = \frac{4}{5} = -\frac{2}{5} \left(\frac{1}{5} + \frac{1}{5} \right)$
- 8. The slope of BC is $\frac{1}{2}$ according to the theorem.

9.
$$\frac{1}{2} = \text{slope}(BC) = \frac{0-4}{x-5} \Rightarrow x-5 = -8 \Rightarrow x = -3.$$

- 10. CD is parallel to AB, thus its slope is equal to that of AB, which is -2.
- 11. $-2 = \text{slope}(\text{CD}) = \frac{y-0}{-1-(-3)} \Longrightarrow y = -4.$
- 12. slope(AD) = $\frac{\Delta y}{\Delta x} = \frac{-4}{-1-7} = \frac{1}{2}$
- 13. The slope of PQ = $\frac{-9}{12} = \frac{-3}{4}$
- 14. AQ is orthogonal to PQ, its slope should be $\frac{4}{3}$.
- 15. Since the slope of AQ is $\frac{4}{3}$, OQ/AO=4/3 \Rightarrow 9/AO=4/3 \Rightarrow AO=27/4.

- 16. $\frac{1}{2}(\text{base}) \times (\text{height}) = \frac{1}{2}(12 + 27/4) \times 9 = \frac{1}{8}(75 \times 9) = 84\frac{3}{8}$
- 17. Since AB is parallel to PQ, its slope should be $-\frac{3}{4}$,
- 18. BP//AQ, so the slope is the same: $\frac{4}{3}$.
- 19. A B = (-3, -2) (5, -4) = (-8, 2)
- 20. D = (3, 4) + relative coordinates of A to B = (3, 4) + (-8, 2) = (-5, 6)
- 21. AB = $2\sqrt{17}$ = BC
- 22. $slope(AB) \times slope(BC) = -1$, which means $AB \perp BC$.

23. y = -3x + 624. First of all, we know the equation of the line should be something like $y = \frac{1}{2}x + b$ since the line passes (-2, 3), we conclude that b=4

- 25. First we need to decide the slope of the line, using the slope formula, we know slope = $\frac{-4}{7}$. Thus, the equation is something like $y = \frac{-4}{7}x + b$. Since the line passes through (-3, -2), $b = \frac{-26}{7}$.
- 26. y = x + 1
- 27. These two points are the *x* and *y*intercepts. The equation is $\frac{1}{3}x + \frac{1}{4}y = 1$.
- 28. Being parallel to 3x + 2y = 1, so the equation of the line should be something like 3x+2y = c. Passing through the point (1, -2 leads us to solve for c, thus, c = -1.
- 29. The equation should be as y + 3x + c. Since its *y*-intercept = 6, it must passes through (0, 6). Thus, $6 + c = 0 \Rightarrow c = -6$. So, the equation should be y + 3x - 6 = 0.

30. x = 3

Special Triangles

31. Draw an auxiliary line CM so that \angle BCM = 60°. \triangle BCM is an equilateral and \triangle MAC is an isosceles with AM = CM. (Why?) Thus, BM = MA = 1, and AB = 2. Using Pythagorean theorem AC = $\sqrt{3}$

34. *x* = 4

 $y = \frac{4}{\sqrt{3}} = \frac{4\sqrt{3}}{3}$

35. $x = 2(\frac{8}{\sqrt{2}}) = 8\sqrt{3}$

37. x = 6 + 5 = 11 $y = 5\sqrt{3}$

AD = 4, CD = 10

 $3x = 5^2 \Longrightarrow x = \frac{25}{3}$

 $y = \sqrt{CD^2 + BD^2} = \sqrt{148} = 2\sqrt{37}$

 $y^2 = x \cdot (CD) = \frac{25}{3} (\frac{25}{3} - 3) = \frac{25 \cdot 16}{9} \Longrightarrow$

 $y = 4\sqrt{6}$

36. $x = 6\sqrt{2}$ $y = 3\sqrt{2}$

38. $x = 4\sqrt{3}$

39. BD = 3

 $\frac{20}{3}$

32. $x = 2\sqrt{3}$, y = 1, $h = \sqrt{3}$, z = 3

33. BC = 6, AC =
$$6\sqrt{2}$$
, AD = 12

40. Let *x* be the height, then the base is 20 =

$$x + 10 + \frac{x}{\sqrt{3}}$$

$$\Rightarrow x = \frac{10\sqrt{3}}{\sqrt{3}+1} = 5\sqrt{3}(\sqrt{3}-1) = 15 - 5\sqrt{3}$$

$$\underbrace{x = \frac{10}{\sqrt{3}+1} = 5\sqrt{3}(\sqrt{3}-1) = 15 - 5\sqrt{3}}_{x = \frac{10}{\sqrt{3}+1}}$$

41. AF=
$$\sqrt{2}$$
, AG= $\sqrt{3}$

- 42. AB=5, AC=5 $\sqrt{3}$, AD=5 \Rightarrow CD=5 $\sqrt{3}$ -5 = 5($\sqrt{3}$ -1)
- 43. Since 18x = 144, x = 8. Use Pythagorean theorem, $y = 6\sqrt{13}$, $z = 4\sqrt{13}$. The diameter is 18+8=26, the radius is 13, the area of the circle is 169π .

$$y = y = y = \begin{cases} x^{3} \sqrt{9x^{7}y^{5}} & y^{3} \sqrt{9x^{7}y^{5}} \\ 44. \sqrt{9x^{7}y^{5}} & \sqrt{9x^{7}y^{5}} \\ \sqrt{16x^{3}y^{9}} & \sqrt{16x^{3}y^{9}} & \sqrt{3x^{2}} \\ \sqrt{16x^{3}y^{9}} & \sqrt{16x^{3}y^{9}} & \sqrt{3x^{2}} \\ 45. \sqrt{16x^{3}y^{9}} & \sqrt{16x^{3}y^{9}} & \sqrt{16x^{3}y^{9}} \\ 45. \sqrt{16x^{3}y^{9}} & \sqrt{16x^{3}y^{9}} \\ 45. \sqrt{16x^{3}y^{9}} & \sqrt{16x^{3}y^{9}} \\ 45. \sqrt{16x^{3}y^{9}} & \sqrt{16x^{3}y^{9}} \\ 46. 9 \sqrt{50} & -6\sqrt{98} + 5\sqrt{32} = 45\sqrt{2} \\ 47. 9 \sqrt{50} & -6\sqrt{2} + 5\sqrt{32} = 45\sqrt{2} \\ 47. 9 \sqrt{50} & -6\sqrt{2} + 5\sqrt{3} \\ 48. \sqrt{16x^{3}y^{9}} & \sqrt{16x^{3}y^{9}} + 5\sqrt{32} = 45\sqrt{2} \\ 47. 9 \sqrt{3}\sqrt{24} & -6\sqrt{3}\sqrt{375} + 5\sqrt{3}\sqrt{81} = 18\sqrt{3}\sqrt{3} \\ -30\sqrt{3}\sqrt{3} + 15\sqrt{3}\sqrt{3} = 3\sqrt{3}\sqrt{3} \\ 48. \sqrt{8} + \sqrt{15}\sqrt{(\sqrt{8}} - \sqrt{15}) = \sqrt{8}^{2} - \sqrt{15}^{2} = 8 \\ 8 - 15 = -7 \\ 49. \sqrt{4a} + \sqrt{3b}\sqrt{(\sqrt{a}} - \sqrt{3b}) = a - 3b \\ 50. \sqrt{8} + 2\sqrt{15}\sqrt{(\sqrt{8}} - \sqrt{27}) = (\sqrt{6}\sqrt{2^{6}} - \frac{6\sqrt{3^{6}}}{3^{6}}) = 2 - 3 = -1 \\ 51. \sqrt{6\sqrt{8}} + \sqrt{6\sqrt{27}}\sqrt{(\sqrt{8}} - \sqrt{27}) = (\sqrt{6}\sqrt{2^{6}} - \frac{6\sqrt{3^{6}}}{3^{6}}) = 2 - 3 = -1 \\ \end{array}$$

Honors Pre Cal
52.
$$(\sqrt[3]{2} + \sqrt[3]{5})(\sqrt[3]{4} - \sqrt[3]{10} + \sqrt[3]{25}) = \sqrt[3]{2}^{3} + \sqrt[3]{5}^{3} = 2 - 5 = -3$$

- 53. $(\sqrt[3]{3} \sqrt[3]{7})(\sqrt[3]{9} + \sqrt[3]{21} + \sqrt[3]{49}) = \sqrt[3]{3} \sqrt[3]{7}^3 = 3 7 = -4$
- 54. $(\sqrt{5} + 3)^2 = 5 + 6\sqrt{5} + 9 = 15 + 6\sqrt{5}$
- 55. $(3\sqrt{5} 7)^2 = 9(5) 42\sqrt{5} + 49 = 94 42\sqrt{5}$
- 56. $(3\sqrt{5} \sqrt{7})^2 = 9(5) 3\sqrt{35} + 7 = 52 3\sqrt{35}$

Math Challenge

57.112

- $59. \ (w^2)^6 / (w^3 \cdot w^2)^4 = \frac{1}{w^8}$ $60. \ -6x^3 \ y^2 / (-4x^2 \ y^6) = \frac{3x}{2y^4}$ $9 = 15 + 6\sqrt{5}$ $61. \ (-2a^3)(5ab^2) / (-3a^4b) = \frac{10b}{3}$
 - 62. $\left(\frac{-3x^3}{y^4}\right)^2 \left(\frac{x^7}{6y^5}\right)^3 = \frac{9x^6}{y^8} \frac{x^{21}}{6^3 y^{15}} = \frac{9x^{27}}{216y^{23}}$ 63. $(a^2)^2 / (a^3)^3 = \frac{1}{a^5}$

64.
$$(-2x^2 y)/(4x^3y^3) = -\frac{1}{2xy^2}$$

Sample Negative Exponents

58. $(-x)(-2x^2)(-3x^3)/\{(-4x^4)(-5x^5)\}=\frac{3}{-10x^3}$

65.
$$5s^2 \cdot t^3 / (3s^4) = \frac{5t^3}{3s^2}$$

